
Eleonora Cianflone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death and Differentiation, 2017, 24, 2101-2116.	5.0	131
2	Kitcre knock-in mice fail to fate-map cardiac stem cells. Nature, 2018, 555, E1-E5.	13.7	79
3	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
4	Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacological Research, 2020, 157, 104781.	3.1	74
5	miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes, 2018, 67, 2554-2568.	0.3	53
6	Atrial myxomas arise from multipotent cardiac stem cells. European Heart Journal, 2020, 41, 4332-4345.	1.0	51
7	Role of c-Kit in Myocardial Regeneration and Aging. Frontiers in Endocrinology, 2019, 10, 371.	1.5	44
8	c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death and Disease, 2019, 10, 436.	2.7	43
9	Molecular basis of functional myogenic specification of <i>Bona Fide</i> multipotent adult cardiac stem cells. Cell Cycle, 2018, 17, 927-946.	1.3	31
10	Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon?. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	1.9	31
11	Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes, 2022, 71, 1081-1098.	0.3	30
12	Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7927.	1.8	27
13	From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. International Journal of Molecular Sciences, 2021, 22, 13180.	1.8	27
14	Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. International Journal of Molecular Sciences, 2020, 21, 3725.	1.8	26
15	Combining cell and gene therapy to advance cardiac regeneration. Expert Opinion on Biological Therapy, 2018, 18, 409-423.	1.4	22
16	The use and abuse of Cre/Lox recombination to identify adult cardiomyocyte renewal rate and origin. Pharmacological Research, 2018, 127, 116-128.	3.1	22
17	WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data. F1000Research, 2021, 10, 1.	0.8	22
18	Heterogeneity of Adult Cardiac Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1169, 141-178	0.8	22

ELEONORA CIANFLONE

#	ARTICLE	IF	CITATIONS
19	Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants, 2021, 10, 1002.	2.2	19
20	Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 7701.	1.8	18
21	Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine, 2022, 50, 101530.	3.2	17
22	In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Communications Biology, 2021, 4, 1146.	2.0	15
23	Overcoming Cancer Cell Drug Resistance by a Folic Acid Targeted Polymeric Conjugate of Buthionine Sulfoximine. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 1513-1522.	0.9	13
24	Lyotropic Liquid Crystals: A Biocompatible and Safe Material for Local Cardiac Application. Pharmaceutics, 2022, 14, 452.	2.0	13
25	Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants, 2022, 11, 208.	2.2	12
26	Sodium-Glucose Cotransporter 2 Inhibitors and Heart Failure: A Bedside-to-Bench Journey. Frontiers in Cardiovascular Medicine, 2021, 8, 810791.	1.1	12
27	Deficit of glucocorticoidâ€induced leucine zipper amplifies angiotensinâ€induced cardiomyocyte hypertrophy and diastolic dysfunction. Journal of Cellular and Molecular Medicine, 2021, 25, 217-228.	1.6	7
28	WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data. F1000Research, 2021, 10, 1.	0.8	5
29	The baby and the bath water: adult cardiac stem cells revisited. European Heart Journal, 2021, 42, 3814-3816.	1.0	4
30	Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells, 2021, 10, 2155.	1.8	4
31	The Role of Anthracyclines in Cardio-Oncology: Oxidative Stress, Inflammation, and Autophagy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-3.	1.9	4
32	Scn1b Expression in the Adult Mouse Heart Modulates Na ⁺ Influx in Myocytes and Reveals a Mechanistic Link between Na ⁺ Entry and Diastolic Function. American Journal of Physiology - Heart and Circulatory Physiology, 2022, , .	1.5	2
33	Cardiac stem cell therapy towards the clinic: The way forward re-starts from within. International Journal of Cardiology, 2021, 345, 105-106.	0.8	1