Xiaolong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197234/publications.pdf

Version: 2024-02-01

257450 276875 53 1,808 24 41 citations h-index g-index papers 53 53 53 2756 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO ₃ â€Based Leadâ€Free Ceramics. Advanced Materials, 2018, 30, 1705171.	21.0	361
2	Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. Journal of Applied Physics, 2013, 113, .	2.5	143
3	Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nature Materials, 2020, 19, 528-533.	27.5	80
4	The Origin of Oxygen Vacancies Controlling La _{2/3} Sr _{1/3} MnO ₃ Electronic and Magnetic Properties. Advanced Materials Interfaces, 2016, 3, 1500753.	3.7	73
5	Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode. Carbon, 2020, 167, 685-695.	10.3	69
6	A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 17748-17756.	14.6	62
7	Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition. Nano-Micro Letters, 2018, 10, 20.	27.0	57
8	In Situ Formation of Hierarchical Bismuth Nanodots/Graphene Nanoarchitectures for Ultrahighâ€Rate and Durable Potassiumâ€lon Storage. Small, 2020, 16, e1905789.	10.0	57
9	In Situ Realâ€Time Study of the Dynamic Formation and Conversion Processes of Metal Halide Perovskite Films. Advanced Materials, 2018, 30, 1706401. Large Strain Response in	21.0	52
10	0.99(<scp><scp>Bi</scp></scp> K Leadâ€Free Ceramics Induced by the Change of <scp><scp>K</scp></scp> / <scp>/<scp>/<scp>/<scp>/<scp>Na</scp>/scp> Ratio</scp></scp></scp></scp>	> <s 3.8</s 	ub>0.1
11	(\scp>\scp>\kscp>\scp>\sub>\i)x\li>\sub>\scp>\scp>\scp>\scp>\sub>\la^2\i>\scp>\scp>\scp>\scp>\scp>\scp>\scp>\scp	10.3	40
12	Facile preparation of nitrogen-doped graphene sponge as a highly efficient oil absorption material. Materials Letters, 2016, 178, 95-99.	2.6	39
13	Facile synthesis the nitrogen and sulfur co-doped carbon dots for selective fluorescence detection of heavy metal ions. Materials Letters, 2017, 193, 236-239.	2.6	39
14	Synergistic Engineering of Sulfur Vacancies and Heterointerfaces in Copper Sulfide Anodes for Aqueous Znâ€lon Batteries with Fast Diffusion Kinetics and an Ultralong Lifespan. Advanced Energy Materials, 2022, 12, .	19.5	39
15	Proton-Dominated Reversible Aqueous Zinc Batteries with an Ultraflat Long Discharge Plateau. ACS Nano, 2021, 15, 14766-14775.	14.6	38
16	Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Materials, 2021, 42, 34-41.	18.0	37
17	Preparation of highly fluorescent sulfur doped graphene quantum dots for live cell imaging. Journal of Luminescence, 2018, 197, 147-152.	3.1	36
18	A Green and lower-temperature synthesis of two-color fluorescent nitrogen doped graphene quantum dots. Dyes and Pigments, 2018, 156, 379-385.	3.7	35

#	Article	IF	CITATIONS
19	Thickness-dependent twinning evolution and ferroelectric behavior of epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BiFeO</mml:mtext></mml:mrow><mml:mthin .<="" 2010,="" 82,="" b,="" films.="" physical="" review="" td=""><td>ın>32/mm</td><td>l:mn></td></mml:mthin></mml:msub></mml:mrow></mml:math>	ın>32/mm	l:mn>
20	Interfacial-Strain-Induced Structural and Polarization Evolutions in Epitaxial Multiferroic BiFeO ₃ (001) Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 2944-2951.	8.0	32
21	Manipulating the Structural and Electronic Properties of Epitaxial SrCoO _{2.5} Thin Films by Tuning the Epitaxial Strain. ACS Applied Materials & Interfaces, 2018, 10, 10211-10219.	8.0	31
22	The morphology and structure of crystals in Qing Dynasty purpleâ€gold glaze excavated from the Forbidden City. Journal of the American Ceramic Society, 2018, 101, 5229-5240.	3.8	30
23	Electronic structure evolutions driven by oxygen vacancy in SrCoO3â'x films. Science China Materials, 2019, 62, 1162-1168.	6.3	27
24	Large and stable piezoelectric response in Bi0.97Nd0.03FeO3 thin film. Applied Physics Letters, 2012, 100,	3.3	26
25	Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 24430-24437.	8.0	24
26	Periodic elastic nanodomains in ultrathin tetragonal-like BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> films. Physical Review B, 2013, 88, .	3.2	22
27	A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 11598-11606.	10.3	21
28	The Structure–Property Investigation of Bi _{1–<i>x</i>} Ce _{<i>x</i>} FeO ₃ (<i>x</i> <=0, 0.05)–Li Battery: <i>In Situ</i> XRD and XANES Studies. Journal of Physical Chemistry C, 2012, 116, 20230-20238.	3.1	19
29	Real-time observation of graphene layer growth: Coupling of the interlayer spacing with thickness. Carbon, 2015, 94, 775-780.	10.3	19
30	Facile Room-Temperature Synthesis of High-Chemical-Stability Nitrogen-Doped Graphene Quantum Dot/CsPbBr ₃ Composite. ACS Applied Electronic Materials, 2019, 1, 2244-2252.	4.3	19
31	Controllable synthesis of large-area free-standing amorphous carbon films and their potential application in supercapacitors. RSC Advances, 2014, 4, 63734-63740.	3.6	14
32	In situ observation of metal ion interactions with graphene oxide layers: From the growth of metal hydroxide to metal oxide formation. Carbon, 2021, 184, 721-727.	10.3	14
33	Improving polymer solar cell performances by manipulating the self-organization of polymer. Applied Physics Letters, 2011, 98, .	3.3	12
34	Dehydration behaviour and structural evolution of graphene oxide membranes on silicon substrate. Carbon, 2017, 114, 23-30.	10.3	12
35	Facile Construction of Novel 3-Dimensional Graphene/Amorphous Porous Carbon Hybrids with Enhanced Lithium Storage Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35191-35199.	8.0	12
36	Thickness-driven first-order phase transitions in manganite ultrathin films. Physical Review B, 2019, 99,	3.2	12

#	Article	IF	CITATIONS
37	Manipulating magnetoelectric properties by interfacial coupling in La0.3Sr0.7MnO3/Ba0.7Sr0.3TiO3 superlattices. Scientific Reports, 2017, 7, 7693.	3.3	11
38	Reversible potassium-ion alloying storage in crystalline silicene. Chemical Engineering Journal, 2022, 435, 134961.	12.7	11
39	Surface double-layer structure in (110) oriented BiFeO3 thin film. Applied Physics Letters, 2014, 105, 202901.	3.3	9
40	The Evidence of Giant Surface Flexoelectric Field in (111) Oriented BiFeO ₃ Thin Film. ACS Applied Materials & Discrete Supplied Materials & Discr	8.0	9
41	<i>In Situ</i> Observation of Thermal Proton Transport through Graphene Layers. ACS Nano, 2017, 11, 8970-8977.	14.6	9
42	Tuning surface conductivity and stability for high-performance Li- and Mn-rich cathode materials. New Journal of Chemistry, 2019, 43, 18943-18950.	2.8	9
43	Synthesis of Tb4O7 complexed with reduced graphene oxide for Rhodamine-B absorption. Materials Research Bulletin, 2016, 77, 111-114.	5.2	8
44	Microwave Hydrothermal Synthesis of Terbium Ions Complexed with Porous Graphene for Effective Absorbent for Organic Dye. Nanoscale Research Letters, 2017, 12, 204.	5.7	8
45	Oxygen vacancies effects on phase diagram of epitaxial La1–x Sr x MnO3 thin films. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	8
46	Facile synthesis of the nitrogen-doped graphene quantum dots at low temperature for cellular labeling. Materials Research Bulletin, 2018, 104, 83-86.	5.2	8
47	Magnetic Augment in the Nitrogen Substituted Bismuth Ferrite. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	7
48	Temperature-dependent evolution of surface charge screening and polarization at ferroelectric surfaces. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	7
49	Oriented inorganic perovskite absorbers processed by colloidal-phase fumigation. Science China Materials, 2021, 64, 2421-2429.	6.3	7
50	Coexistence of Superconductivity and Ferromagnetism in Ni-Doped Bi4 â^'xNixO4S3 (0.075 â%xâ% 0.150). Journal of Superconductivity and Novel Magnetism, 2016, 29, 879-884.	1.8	5
51	Surface protonation and oxygen evolution activity of epitaxial La1â^xSrxCoO3 thin films. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	5
52	The preparation of a three dimensional terbium doped reduced graphene oxide aerogel with photoluminescence and paramagnetic properties. RSC Advances, 2018, 8, 9287-9292.	3.6	2
53	Novel phenomenon of magnetism and superconductivity in Fe-doped superconductor Bi4â^'x Fe x O4S3 () Tj ETC	Qq1_1 0.78	34314 rgBT/