Haydar U Zaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3196665/publications.pdf

Version: 2024-02-01

566801 580395 49 759 15 25 citations g-index h-index papers 49 49 49 823 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The improvement of physicomechanical, flame retardant, and thermal properties of lignocellulosic material filled polymer composites. Journal of Thermoplastic Composite Materials, 2023, 36, 1034-1050.	2.6	2
2	Effect of fiber surface modifications on the properties of snake grass fiber reinforced polypropylene bio-composites. Journal of Adhesion Science and Technology, 2022, 36, 1439-1457.	1.4	6
3	Acetylation used for natural fiber/polymer composites. Journal of Thermoplastic Composite Materials, 2021, 34, 3-23.	2.6	36
4	Banana fiber strands–reinforced polymer matrix composites. Composite Interfaces, 2016, 23, 281-295.	1.3	16
5	Environmentally degradable sago starch filled low-density polyethylene. Journal of Polymer Engineering, 2015, 35, 551-563.	0.6	4
6	Effects of different starch types on the physico-mechanical and morphological properties of low density polyethylene composites. Journal of Polymer Engineering, 2015, 35, 793-804.	0.6	10
7	Preparation, structure, and properties of the coir fiber/polypropylene composites. Journal of Composite Materials, 2014, 48, 3293-3301.	1.2	54
8	Preparation and properties of coir fiber-reinforced ethylene glycol dimethacrylate-based composite. Journal of Thermoplastic Composite Materials, 2014, 27, 35-51.	2.6	13
9	Influence of two novel compatibilizers on the properties of LDPE/organoclay nanocomposites. Journal of Polymer Engineering, 2014, 34, 75-83.	0.6	4
10	Effect of coir fiber content and compatibilizer on the properties of unidirectional coir fiber/polypropylene composites. Fibers and Polymers, 2014, 15, 831-838.	1.1	16
11	Effect of CaCO3 contents on the properties of polyethylene nanocomposites sheets. Fibers and Polymers, 2014, 15, 839-846.	1.1	16
12	Effect of nano-CaCO ₃ on the mechanical and crystallization behavior of HDPE/LDPE/nano-CaCO ₃ ternary blend. Journal of Thermoplastic Composite Materials, 2014, 27, 1701-1710.	2.6	11
13	Modification and characterization of photo-cured sodium alginate film with ethylene glycol: effect of additives. Polymer Bulletin, 2013, 70, 181-194.	1.7	3
14	Banana fiber-reinforced polypropylene composites: A study of the physico-mechanical properties. Fibers and Polymers, 2013, 14, 121-126.	1.1	24
15	Physico-mechanical and degradation properties of biodegradable photografted coir fiber with acrylic monomers. Polymer Bulletin, 2013, 70, 2277-2290.	1.7	10
16	Preparation and properties of sodium alginate films. Journal of Polymer Engineering, 2013, 33, 829-836.	0.6	3
17	Modification of gelatin films using 2-ethylhexyl acrylate by gamma radiation. Journal of Thermoplastic Composite Materials, 2013, 26, 795-808.	2.6	3
18	Comparison of mechanical and degradation properties of EG and EGDMA grafted gelatin films. Journal of Adhesion Science and Technology, 2013, 27, 413-422.	1.4	6

#	Article	IF	CITATIONS
19	A comparative study of gamma and ultraviolet radiation on gelatin film with 2-ethylhexyl acrylate. Journal of Adhesion Science and Technology, 2013, 27, 2653-2665.	1.4	7
20	Gamma-irradiated jute/polypropylene composites by extrusion molding. Composite Interfaces, 2013, 20, 93-105.	1.3	15
21	Improvement of physicomechanical properties of grafted coir fiber with ethyleneglycol dimethacrylate: effect of UV radiation. Journal of Polymer Engineering, 2012, 32, .	0.6	1
22	Physico-Mechanical, Interfacial, Degradation, and Dielectric Properties of Jute/PP Composites: Effect of Dye and Gamma Radiation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 596-610.	1.8	7
23	Studies of the Physico-Mechanical, Interfacial, and Degradation Properties of Jute Fabrics/Melamine Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 748-758.	1.8	6
24	Comparative experimental studies on the mechanical and degradation properties of natural fibers reinforced polypropylene composites. Composite Interfaces, 2012, 19, 59-70.	1.3	8
25	Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites. Journal of Polymer Engineering, 2012, 32, 301-309.	0.6	13
26	Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites, 2012, 33, 1077-1084.	2.3	29
27	Effect of nonionizing radiation on the physicomechanical properties of banana fiber/pp composites with HEMA. Polymer Composites, 2012, 33, 1424-1431.	2.3	6
28	Effect of ionizing and non-ionizing preirradiations on physico-mechanical properties of coir fiber grafting with methylacrylate. Fibers and Polymers, 2012, 13, 593-599.	1.1	9
29	Surface Modification of Jute Fabrics Using Acrylic Monomers: Effect of Additives. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 754-765.	1.8	13
30	A Comparative Study on the Mechanical, Degradation and Interfacial Properties of Jute/LLDPE and Jute/Natural Rubber Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 303-315.	1.8	23
31	Fabrication and Mechanical Characterization of Jute Fiber-Reinforced Melamine Matrix Composite. Polymer-Plastics Technology and Engineering, 2011, 50, 147-152.	1.9	12
32	Physico-mechanical properties of wound dressing material and its biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1369-1375.	1.5	86
33	Effect of chemical modifications on the performance of biodegradable photocured coir fiber. Fibers and Polymers, 2011, 12, 727-733.	1.1	10
34	A comparative study on the mechanical and degradation properties of plant fibers reinforced polyethylene composites. Polymer Composites, 2011, 32, 1552-1560.	2.3	12
35	Role of gamma radiation and EGDMA on the physico–mechanical properties of jute fabrics/polypropylene composites. Polymer Composites, 2011, 32, 1888-1894.	2.3	4
36	Fabrication and Mechanical Characterization of Jute Fabrics: Reinforced Polyvinyl Chloride/Polypropylene Hybrid Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 576-590.	1.8	28

#	Article	IF	CITATIONS
37	Effect of Ultraviolet Radiation and Potassium Permanganate on the Physico-Mechanical Properties of Jute Polymer Composites. Polymer-Plastics Technology and Engineering, 2011, 50, 651-659.	1.9	11
38	Preparation and Characterization of Gelatin-Based PVA Film: Effect of Gamma Irradiation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 1056-1069.	1.8	26
39	Physico-Mechanical and Degradation Properties of Banana Fiber/LDPE Composites: Effect of Acrylic Monomer and Starch. Composite Interfaces, 2011, 18, 685-700.	1.3	29
40	Preparation and characterization of jute fabrics reinforced urethane based thermoset composites: Effect of UV radiation. Fibers and Polymers, 2010, 11, 258-265.	1.1	11
41	Mechanical and electrical properties of photocured jute fabric with 2-hydroxy ethylacrylate. Fibers and Polymers, 2010, 11, 391-397.	1.1	8
42	Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers and Polymers, 2010, 11, 455-463.	1.1	59
43	Preparation of selective ion adsorbent by photo curing with acrylic and phosphoric acid on jute yarn. Fibers and Polymers, 2010, 11, 832-837.	1.1	3
44	A Comparative Study between Gamma and UV Radiation of Jute fabrics/Polypropylene Composites: Effect of Starch. Journal of Reinforced Plastics and Composites, 2010, 29, 1930-1939.	1.6	32
45	Study on the Mechanical and Thermal Properties of Jute-Reinforced Methyl Acrylate Grafted PET Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 373-380.	1.9	8
46	Preparation of Selective Ion Adsorbent by Photo-Curing of HEMA and Phosphoric Acid on PET Yarn. Polymer-Plastics Technology and Engineering, 2010, 49, 567-572.	1.9	3
47	Thermomechanical and Interfacial Properties of Calcium Alginate Fiber-Reinforced Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 325-331.	1.9	2
48	Effect of the Incorporation of PVC on the Mechanical Properties of the Jute-Reinforced LLDPE Composite. Polymer-Plastics Technology and Engineering, 2010, 49, 707-712.	1.9	21
49	Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation. Polymer-Plastics Technology and Engineering, 2009, 48, 1130-1138.	1.9	20