José M Manero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3196541/publications.pdf Version: 2024-02-01

LOSÃO M MANERO

#	Article	IF	CITATIONS
1	Citric Acid in the Passivation of Titanium Dental Implants: Corrosion Resistance and Bactericide Behavior. Materials, 2022, 15, 545.	2.9	7
2	Relevant Aspects of Piranha Passivation in Ti6Al4V Alloy Dental Meshes. Coatings, 2022, 12, 154.	2.6	5
3	Citric Acid Passivation of Titanium Dental Implants for Minimizing Bacterial Colonization Impact. Coatings, 2021, 11, 214.	2.6	11
4	Mineralization of Titanium Surfaces: Biomimetic Implants. Materials, 2021, 14, 2879.	2.9	20
5	Membrane perturbation, altered morphology and killing of Staphylococcus epidermidis upon contact with a cytocompatible peptide-based antibacterial surface. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111745.	5.0	5
6	In-Situ Laser Directed Energy Deposition of Biomedical Ti-Nb and Ti-Zr-Nb Alloys from Elemental Powders. Metals, 2021, 11, 1205.	2.3	15
7	Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110586.	5.0	20
8	Early Short-Term Postoperative Mechanical Failures of Current Ceramic-on-Ceramic Bearing Total Hip Arthroplasties. Materials, 2020, 13, 5318.	2.9	2
9	Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals, 2020, 10, 1156.	2.3	12
10	Antimicrobial PHAs coatings for solid and porous tantalum implants. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110317.	5.0	28
11	PHAs as matrices for drug delivery. , 2019, , 183-213.		2
12	A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. International Journal of Molecular Sciences, 2019, 20, 1429.	4.1	27
13	Influence of the Elastic Modulus on the Osseointegration of Dental Implants. Materials, 2019, 12, 980.	2.9	64
14	Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. Biomaterials Science, 2019, 7, 1281-1285.	5.4	13
15	Fracture and Fatigue of Titanium Narrow Dental Implants: New Trends in Order to Improve the Mechanical Response. Materials, 2019, 12, 3728.	2.9	15
16	All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids and Surfaces B: Biointerfaces, 2018, 169, 30-40.	5.0	48
17	Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine, 2018, 13, 899-912.	3.3	5
18	In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. Journal of Materials Science: Materials in Medicine, 2018, 29, 164.	3.6	30

JOSé M MANERO

#	Article	IF	CITATIONS
19	Mechanism of fracture of NiTi superelastic endodontic rotary instruments. Journal of Materials Science: Materials in Medicine, 2018, 29, 131.	3.6	6
20	Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3770-3776.	2.2	10
21	Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial Inhibition Properties on the Surface of Biomaterials. ACS Applied Materials & Interfaces, 2017, 9, 21618-21630.	8.0	77
22	Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis. Journal of Biomedical Materials Research - Part A, 2017, 105, 973-983.	4.0	18
23	Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands. Scientific Reports, 2017, 7, 16363.	3.3	28
24	Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation. Applied Surface Science, 2017, 393, 82-92.	6.1	42
25	Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants. BioMed Research International, 2017, 2017, 1-10.	1.9	23
26	Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomaterialia, 2016, 43, 269-281.	8.3	51
27	Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs. Materials Science and Engineering C, 2016, 69, 538-545.	7.3	44
28	Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications. Journal of Materials Science: Materials in Medicine, 2016, 27, 124.	3.6	18
29	Tuning Mesenchymal Stem Cell Response onto Titanium–Niobium–Hafnium Alloy by Recombinant Fibronectin Fragments. ACS Applied Materials & Interfaces, 2016, 8, 2517-2525.	8.0	30
30	Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering C, 2016, 59, 524-532.	7.3	52
31	Installing Multifunctionality on Titanium with RGDâ€Decorated Polyurethaneâ€Polyurea Roxithromycin Loaded Nanoparticles: Toward New Osseointegrative Therapies. Advanced Healthcare Materials, 2015, 4, 1956-1960.	7.6	27
32	Mimicking bone extracellular matrix: Integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids and Surfaces B: Biointerfaces, 2015, 128, 191-200.	5.0	82
33	Antibacterial Properties of hLf1–11 Peptide onto Titanium Surfaces: A Comparison Study Between Silanization and Surface Initiated Polymerization. Biomacromolecules, 2015, 16, 483-496.	5.4	110
34	Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications. Colloids and Surfaces B: Biointerfaces, 2015, 127, 22-32.	5.0	48
35	Mechanical and physicochemical characterization along with biological interactions of a new Ti25Nb21Hf alloy for bone tissue engineering. Journal of Biomaterials Applications, 2015, 30, 171-181.	2.4	8
36	Antibacterial Coatings on Titanium Surfaces: A Comparison Study Between <i>in Vitro</i> Single-Species and Multispecies Biofilm. ACS Applied Materials & Interfaces, 2015, 7, 5992-6001.	8.0	53

JOSé M MANERO

#	Article	IF	CITATIONS
37	Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2015, 136, 704-711.	5.0	13
38	Study on the use of 3â€aminopropyltriethoxysilane and 3â€chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti–Nb–Hf alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 495-502.	3.4	21
39	Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of <i>Streptococcus sanguinis</i> and <i>Lactobacillus salivarius</i> . Clinical Oral Implants Research, 2015, 26, 1170-1179.	4.5	31
40	Mechanical properties of a new thermoplastic polymer orthodontic archwire. Materials Science and Engineering C, 2014, 42, 1-6.	7.3	9
41	Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomaterialia, 2014, 10, 3522-3534.	8.3	125
42	Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy. Journal of Materials Science: Materials in Medicine, 2014, 25, 311-320.	3.6	14
43	NiTi superelastic orthodontic archwires with polyamide coating. Journal of Materials Science: Materials in Medicine, 2014, 25, 555-560.	3.6	20
44	Novel Peptide-Based Platform for the Dual Presentation of Biologically Active Peptide Motifs on Biomaterials. ACS Applied Materials & amp; Interfaces, 2014, 6, 6525-6536.	8.0	73
45	Low modulus Ti–Nb–Hf alloy for biomedical applications. Materials Science and Engineering C, 2014, 42, 691-695.	7.3	41
46	Friction coefficients and wear rates of different orthodontic archwires in artificial saliva. Journal of Materials Science: Materials in Medicine, 2013, 24, 1327-1332.	3.6	29
47	Lamination and spherulite-like compaction of a hormone's native amyloid-like nanofibrils: spectroscopic insights into key interactions. Faraday Discussions, 2013, 166, 163.	3.2	13
48	NiTi superelastic orthodontic wires with variable stress obtained by ageing treatments. Materials Letters, 2013, 104, 5-7.	2.6	17
49	New Ni-free superelastic alloy for orthodontic applications. Materials Science and Engineering C, 2013, 33, 3325-3328.	7.3	15
50	A low elastic modulus Tiâ€Nbâ€Hf alloy bioactivated with an elastinâ€like proteinâ€based polymer enhances osteoblast cell adhesion and spreading. Journal of Biomedical Materials Research - Part A, 2013, 101A, 819-826.	4.0	16
51	<i>In vitro</i> response of preosteoblastic MG63 cells on Niâ€free Ti shape memory substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 709-720.	3.4	10
52	Analysis of Tantalum Implants used for Avascular Necrosis of the Femoral Head: A Review of Five Retrieved Specimens. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 29-36.	1.6	19
53	Variation of the superelastic properties and nickel release from original and reused NiTi orthodontic archwires. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 113-119.	3.1	21
54	Characterization of Two Ti-Nb-Hf-Zr Alloys Under Different Cold Rolling Conditions. Journal of Materials Engineering and Performance, 2011, 20, 653-657.	2.5	10

JOSé M MANERO

#	Article	IF	CITATIONS
55	Investigation of the hydroxyapatite obtained as hydrolysis product of $\hat{l}\pm$ -tricalcium phosphate by transmission electron microscopy. CrystEngComm, 2010, 12, 3318.	2.6	29
56	Design and Characterization of New Ti-Nb-Hf Alloys. Journal of Materials Engineering and Performance, 2009, 18, 490-495.	2.5	23
57	Optimization of the Ti-16.2Hf-24.8Nb-1Zr Alloy by Cold Working. Journal of Materials Engineering and Performance, 2009, 18, 506-510.	2.5	18
58	Thermoelastic phase transformation in TiNi alloys under cyclic instrumented indentation. Intermetallics, 2009, 17, 784-791.	3.9	27
59	Study of New Multifunctional Shape Memory and Low Elastic Modulus Ni-Free Ti Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 742-751.	2.2	28
60	Study of hardness and wear behaviour of NiTi shape memory alloys. Journal of Alloys and Compounds, 2008, 460, 213-219.	5.5	66
61	Quantum parameters for guiding the design of Ti alloys with shape memory and/or low elastic modulus. Philosophical Magazine, 2008, 88, 2529-2548.	1.6	18
62	The concept of brain death did not evolve to benefit organ transplants. Journal of Medical Ethics, 2007, 33, 197-200.	1.8	57
63	The Declaration of Sydney on human death. Journal of Medical Ethics, 2007, 33, 699-703.	1.8	28
64	QEEG Prognostic Value in Acute Stroke. Clinical EEG and Neuroscience, 2007, 38, 155-160.	1.7	53
65	Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants. Journal of Biomedical Materials Research - Part A, 2007, 82A, 521-529.	4.0	50
66	Low elastic modulus metals for joint prosthesis: Tantalum and nickel–titanium foams. Journal of the European Ceramic Society, 2007, 27, 3391-3398.	5.7	31
67	Application of the technique of environmental scanning electron microscopy to the paper industry. Scanning, 2006, 21, 36-39.	1.5	1
68	Improved surgical mesh integration into the rat abdominal wall with arginine administration. Biomaterials, 2006, 27, 758-768.	11.4	16
69	Change of Young's modulus of cold-deformed pure iron in a tensile test. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3317-3324.	2.2	103
70	Wear Behaviour of the Pair Ti–6Al–4V–UHMWPE of Acrylic Bone Cements Containing Different Radiopaque Agents. Journal of Biomaterials Applications, 2004, 18, 305-319.	2.4	6
71	Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004, 218, 167-172.	1.8	11
72	Influencia de los tratamientos térmicos en la deformación en frÃo de los aceros inoxidables dúplex. Revista De Metalurgia, 2004, 40, 219-223.	0.5	1

José M Manero

#	Article	IF	CITATIONS
73	Stress relaxation tests in polypropylene monofilament meshes used in the repair of abdominal walls. Journal of Materials Science: Materials in Medicine, 2003, 14, 811-815.	3.6	5
74	A radiopaque polymeric matrix for acrylic bone cements. , 2003, 64B, 44-55.		21
75	Applications of environmental scanning electron microscopy (ESEM) in biomaterials field. Microscopy Research and Technique, 2003, 61, 469-480.	2.2	53
76	The effect of cooling rate on the cyclic deformation of β-annealed Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 349, 150-155.	5.6	51
77	Wollastonite Coatings on Zirconia Ceramics. Key Engineering Materials, 2003, 254-256, 379-382.	0.4	1
78	Growth of Bioactive Surfaces on Dental Implants. Implant Dentistry, 2002, 11, 170-175.	1.3	11
79	Experimental Evaluation of a New Layered Prosthesis Exhibiting a Low Tensile Modulus of Elasticity: Long-term Integration Response within the Rat Abdominal Wall. World Journal of Surgery, 2002, 26, 409-415.	1.6	35
80	Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Materials Science and Engineering C, 2002, 22, 53-60.	7.3	74
81	Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. Journal of Materials Science: Materials in Medicine, 2002, 13, 1251-1257.	3.6	14
82	Formation of α-Widmanstäten structure: effects of grain size and cooling rate on the Widmanstäten morphologies and on the mechanical properties in Ti6Al4V alloy. Journal of Alloys and Compounds, 2001, 329, 142-152.	5.5	229
83	Low cycle fatigue behavior of Ti6Al4V thermochemically nitrided for its use in hip prostheses. Journal of Materials Science: Materials in Medicine, 2001, 12, 935-937.	3.6	11
84	Early imaging of integration response to polypropylene mesh in abdominal Wall by environmental scanning electron microscopy: Comparison of two placement techniques and correlation with tensiometric studies. World Journal of Surgery, 2001, 25, 840-847.	1.6	22
85	Fatiga oligocÃelica de la aleación Ti ₆ Al ₄ V nitrurada termoquAmicamente. Revista De Metalurgia, 2001, 37, 108-111.	0.5	Ο
86	Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Materialia, 2000, 48, 3353-3359.	7.9	53
87	Caracterización de la capa formada por nitruración gaseosa del titanio a alta temperatura. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 301-304.	1.9	1
88	Analysis of the structural changes of a phosphate glass during its dissolution in simulated body fluid. Journal of Materials Science: Materials in Medicine, 1999, 10, 729-732.	3.6	52
89	Effect of the addition of palladium on grain growth kinetics of pure titanium. Journal of Alloys and Compounds, 1997, 260, 147-152.	5.5	29
90	Effect of saline solution environment on the cyclic deformation of Ti-6Al-4V alloy. Journal of Materials Science: Materials in Medicine, 1996, 7, 131-134.	3.6	4

José M Manero

#	Article	IF	CITATIONS
91	Relevant aspects in the clinical applications of NiTi shape memory alloys. Journal of Materials Science: Materials in Medicine, 1996, 7, 403-406.	3.6	54
92	Effect of grain size on the martensitic transformation in NiTi alloy. Journal of Materials Science, 1995, 30, 2526-2530.	3.7	58
93	Structural Transformations in Ti-6Al-4V Alloy. European Physical Journal Special Topics, 1995, 05, C2-317-C2-322.	0.2	1
94	Grain growth in austenite NiTi shape memory alloys. Scripta Metallurgica Et Materialia, 1994, 31, 483-486.	1.0	3
95	Influence of Cold Work in the Elastic Modulus of the Ti-16.2Hf-24.8Nb-1Zr Alloy Characterized by Instrumented Nanoindentation. Key Engineering Materials, 0, 423, 113-118.	0.4	4
96	Analysis of tantalum implants used for avascular necrosis of the femoral head: a review of five retrieved specimens. Journal of Applied Biomaterials and Biomechanics, 0, , 0-0.	0.4	1