List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3196399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydrate Polymers, 2022, 277, 118827.	5.1	30
2	A novel hydrophobic all-biomass aerogel reinforced by dialdehyde carboxymethyl cellulose for oil/organic solvent-water separation. Polymer, 2022, 238, 124402.	1.8	23
3	Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Applied Bio Materials, 2022, 5, 734-746.	2.3	7
4	Functionalization of an Injectable Self-Healing pH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS Applied Polymer Materials, 2022, 4, 1243-1254.	2.0	10
5	Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, 285, 119237.	5.1	19
6	Antibacterial dialdehyde sodium alginate∫ε-polylysine microspheres for fruit preservation. Food Chemistry, 2022, 387, 132885.	4.2	31
7	Matrix metalloproteinase-responsive collagen-oxidized hyaluronic acid injectable hydrogels for osteoarthritic therapy. , 2022, 137, 212804.		13
8	Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS Applied Polymer Materials, 2022, 4, 3885-3895.	2.0	8
9	¹³¹ I-Labeled Silk Fibroin Microspheres for Radioembolic Therapy of Rat Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2022, 14, 21848-21859.	4.0	10
10	Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Research International, 2022, 157, 111380.	2.9	47
11	Hydrothermal shrinkage behavior of pigskin. Thermochimica Acta, 2021, 699, 178896.	1.2	2
12	Stability Enhanced Pickering Emulsions Based on Gelatin and Dialdehyde Starch Nanoparticles as Simple Strategy for Structuring Liquid Oils. Food and Bioprocess Technology, 2021, 14, 1600-1610.	2.6	10
13	Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food and Bioprocess Technology, 2021, 14, 1648-1661.	2.6	32
14	Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite. ACS Applied Bio Materials, 2021, 4, 5797-5808.	2.3	19
15	Advances in Antimicrobial Polymer Coatings in the Leather Industry: A Comprehensive Review. Industrial & Engineering Chemistry Research, 2021, 60, 15004-15018.	1.8	18
16	Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Materials Science and Engineering C, 2020, 106, 110185.	3.8	31
17	pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydrate Polymers, 2020, 233, 115858.	5.1	53
18	Fabrication of water-resistance and durable antimicrobial adhesion polyurethane coating containing weakly amphiphilic poly(isobornyl acrylate) Side chains. Progress in Organic Coatings, 2020, 147, 105812.	1.9	19

#	Article	IF	CITATIONS
19	Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview. Advances in Colloid and Interface Science, 2020, 283, 102235.	7.0	41
20	Fabrication of Polypyrrole-Grafted Gelatin-Based Hydrogel with Conductive, Self-Healing, and Injectable Properties. ACS Applied Polymer Materials, 2020, 2, 3016-3023.	2.0	46
21	Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. Materials Science and Engineering C, 2020, 116, 111165.	3.8	15
22	Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS Applied Bio Materials, 2020, 3, 2058-2067.	2.3	14
23	Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food and Bioprocess Technology, 2020, 13, 577-588.	2.6	41
24	A facile preparation of a novel non-leaching antimicrobial waterborne polyurethane leather coating functionalized by quaternary phosphonium salt. Journal of Leather Science and Engineering, 2020, 2, .	2.7	22
25	Facile Fabrication of Biocompatible Gelatin-Based Self-Healing Hydrogels. ACS Applied Polymer Materials, 2019, 1, 1350-1358.	2.0	120
26	Development of Microspheres Based on Thiol-Modified Sodium Alginate for Intestinal-Targeted Drug Delivery. ACS Applied Bio Materials, 2019, 2, 5810-5818.	2.3	21
27	Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS Applied Materials & amp; Interfaces, 2019, 11, 269-277.	4.0	51
28	Effects of carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydrate Polymers, 2018, 192, 118-125.	5.1	52
29	One-Pot Approach for the Synthesis of Water-Soluble Anatase TiO ₂ Nanoparticle Cluster with Efficient Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2018, 122, 26447-26453.	1.5	6
30	A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property. European Polymer Journal, 2018, 108, 498-506.	2.6	50
31	Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustainable Chemistry and Engineering, 2018, 6, 9153-9166.	3.2	110
32	Preparation and characterization of dialdehyde β-cyclodextrin with broad-spectrum antibacterial activity. Food Research International, 2018, 111, 237-243.	2.9	22
33	Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 2018, 83, 308-316.	5.6	106
34	Comparative study of the physicochemical and photocatalytic properties of water-soluble polymer-capped TiO2 nanoparticles. Environmental Science and Pollution Research, 2018, 25, 26259-26266.	2.7	1
35	Interconnected macroporous 3D scaffolds templated from gelatin nanoparticle-stabilized high internal phase emulsions for biomedical applications. Soft Matter, 2017, 13, 3871-3878.	1.2	38
36	Tailor-made zwitterionic polyurethane coatings: microstructure, mechanical property and their antimicrobial performance. RSC Advances, 2017, 7, 27522-27529.	1.7	46

#	Article	IF	CITATIONS
37	Synthesis of oxidized β-cyclodextrin with high aqueous solubility and broad-spectrum antimicrobial activity. Carbohydrate Polymers, 2017, 177, 97-104.	5.1	33
38	Preparation, characterization and antibacterial activity of oxidized \hat{l}^{2} -carrageenan. Carbohydrate Polymers, 2017, 174, 1051-1058.	5.1	89
39	Development of Antimicrobial Gelatin-Based Edible Films by Incorporation of Trans-Anethole/β-Cyclodextrin Inclusion Complex. Food and Bioprocess Technology, 2017, 10, 1844-1853.	2.6	32
40	Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydrate Polymers, 2017, 174, 1095-1105.	5.1	35
41	Development of Antimicrobial and Controlled Biodegradable Gelatin-Based Edible Films Containing Nisin and Amino-Functionalized Montmorillonite. Food and Bioprocess Technology, 2017, 10, 1727-1736.	2.6	42
42	Novel hemocompatible nanocomposite hydrogels crosslinked with methacrylated gelatin. RSC Advances, 2016, 6, 43663-43671.	1.7	34
43	Shortâ€range and longâ€range crossâ€linking effects of polygenipin on gelatinâ€based composite materials. Journal of Biomedical Materials Research - Part A, 2016, 104, 2712-2722.	2.1	14
44	Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity. Carbohydrate Polymers, 2016, 154, 13-19.	5.1	31
45	Molecular weight effects of PEG on the crystal structure and photocatalytic activities of PEG-capped TiO ₂ nanoparticles. RSC Advances, 2016, 6, 83366-83372.	1.7	17
46	Effect of oxidation level on the inclusion capacity and solution stability of oxidized amylose in aqueous solution. Carbohydrate Polymers, 2016, 138, 41-48.	5.1	16
47	Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydrate Polymers, 2016, 137, 508-514.	5.1	141
48	Development and characterization of dialdehyde xanthan gum crosslinked gelatin based edible films incorporated with amino-functionalized montmorillonite. Food Hydrocolloids, 2015, 51, 129-135.	5.6	62
49	Comparative study of the effects of anatase and rutile titanium dioxide nanoparticles on the structure and properties of waterborne polyurethane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 92-99.	2.3	29
50	Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydrate Polymers, 2015, 129, 17-24.	5.1	75
51	Preparation, physicochemical characterization and release behavior of the inclusion complex of trans -anethole and Î ² -cyclodextrin. Food Research International, 2015, 74, 55-62.	2.9	76
52	Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels. ACS Applied Materials & Interfaces, 2015, 7, 18732-18741.	4.0	109
53	Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 2014, 39, 243-250.	5.6	184
54	A Novel Approach for Synthesis of Zwitterionic Polyurethane Coating with Protein Resistance. Langmuir, 2014, 30, 12860-12867.	1.6	51

#	Article	IF	CITATIONS
55	Gelatin Particle-Stabilized High Internal Phase Emulsions as Nutraceutical Containers. ACS Applied Materials & Interfaces, 2014, 6, 13977-13984.	4.0	227
56	Ringâ€opening polymerization of genipin and its longâ€range crosslinking effect on collagen hydrogel. Journal of Biomedical Materials Research - Part A, 2013, 101A, 385-393.	2.1	55
57	Freezing–thawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-MMT composite films. Food Hydrocolloids, 2013, 33, 273-279.	5.6	45
58	Freezing/thawing effects on the exfoliation of montmorillonite in gelatinâ€based bionanocomposite. Journal of Applied Polymer Science, 2013, 128, 3141-3148.	1.3	25
59	Effects of montmorillonite on the structure and properties of gelatinâ€polyethylene glycol composite fibers. Journal of Applied Polymer Science, 2013, 129, 773-778.	1.3	9
60	Influence of palygorskite on the structure and thermal stability of collagen. Applied Clay Science, 2012, 62-63, 41-46.	2.6	30
61	Revisit the pre-transition of type I collagen denaturation in dilute solution by ultrasensitive differential scanning calorimetry. Thermochimica Acta, 2012, 548, 1-5.	1.2	20
62	Trivalent chromium and aluminum affect the thermostability and conformation of collagen very differently. Journal of Inorganic Biochemistry, 2012, 117, 124-130.	1.5	24
63	Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 2012, 27, 22-29.	5.6	270
64	Modification of collagen with a natural cross-linker, procyanidin. International Journal of Biological Macromolecules, 2011, 48, 354-359.	3.6	282
65	Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydrate Polymers, 2011, 84, 881-886.	5.1	187
66	Collagen Cryogel Crossâ€Linked by Dialdehyde Starch. Macromolecular Materials and Engineering, 2010, 295, 100-107.	1.7	107
67	Ultrasonic irradiation in the enzymatic extraction of collagen. Ultrasonics Sonochemistry, 2009, 16, 605-609.	3.8	85
68	Effects of Cr ³⁺ on the Structure of Collagen Fiber. Langmuir, 2009, 25, 11905-11910.	1.6	83
69	Temperature induced denaturation of collagen in acidic solution. Biopolymers, 2007, 86, 282-287.	1.2	111
70	Heteroaggregation in Binary Mixtures of Oppositely Charged Colloidal Particles. Langmuir, 2006, 22, 1038-1047.	1.6	112
71	Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis. Waste Management, 2003, 23, 835-843.	3.7	73
72	Effect of pH on gelatin self-association investigated by laser light scattering and atomic force microscopy. Polymer International, 2002, 51, 233-238.	1.6	47

#	Article	IF	CITATIONS
73	Effect of pH on gelatin selfâ€association investigated by laser light scattering and atomic force microscopy. Polymer International, 2002, 51, 233-238.	1.6	2