Sujit K Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3196054/publications.pdf

Version: 2024-02-01

19608 19136 14,555 153 61 118 citations h-index g-index papers 166 166 166 10520 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie, 2022, 134, e202114132.	1.6	2
2	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
3	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	1.7	13
4	Microporous carbon derived from cotton stalk crop-residue across diverse geographical locations as efficient and regenerable CO2 adsorbent with selectivity. Journal of CO2 Utilization, 2022, 60, 101975.	3.3	12
5	Unveiling the Impact of Diverse Morphology of Ionic Porous Organic Polymers with Mechanistic Insight on the Ultrafast and Selective Removal of Toxic Pollutants from Water. ACS Applied Materials & amp; Interfaces, 2022, 14, 20042-20052.	4.0	18
6	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
7	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
8	Titelbild: Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water (Angew. Chem. 32/2022). Angewandte Chemie, 2022, 134, .	1.6	0
9	Cover Picture: Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water (Angew. Chem. Int. Ed. 32/2022). Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
10	Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework. Energy and Environmental Science, 2022, 15, 3462-3469.	15.6	55
11	A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Transactions, 2021, 50, 10133-10141.	1.6	25
12	Rapid, selective capture of toxic oxo-anions of Se(<scp>iv</scp>), Se(<scp>vi</scp>) and As(<scp>v</scp>) from water by an ionic metal–organic framework (iMOF). Journal of Materials Chemistry A, 2021, 9, 6499-6507.	5.2	39
13	Recognition and Sequestration of Toxic Inorganic Water Pollutants with Hydrolytically Stable Metalâ€Organic Frameworks. Chemical Record, 2021, 21, 1666-1680.	2.9	22
14	A decade of decoding. Nature Reviews Chemistry, 2021, 5, 600-601.	13.8	2
15	Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coordination Chemistry Reviews, 2021, 437, 213852.	9.5	74
16	Functionalized Ionic Porous Organic Polymers Exhibiting High Iodine Uptake from Both the Vapor and Aqueous Medium. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34188-34196.	4.0	51
17	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	3.2	22
18	Neutral Nitrogen Donor Ligandâ€based MOFs for Sensing Applications. Chemistry - an Asian Journal, 2021, 16, 2569-2587.	1.7	9

#	Article	IF	Citations
19	Imidazoliumâ€Functionalized Chemically Robust Ionic Porous Organic Polymers (<i>i</i> POPs) toward Toxic Oxoâ€Pollutants Capture from Water. Chemistry - A European Journal, 2021, 27, 13442-13449.	1.7	35
20	Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Transactions, 2021, 50, 17832-17850.	1.6	22
21	Magnetic Nanoparticle-Embedded Ionic Microporous Polymer Composite as an Efficient Scavenger of Organic Micropollutants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51474-51484.	4.0	5
22	Selective and Sensitive Fluorescence Turnâ€on Detection of Cyanide Ions in Water by Post Metallization of a MOF. ChemPlusChem, 2021, 87, e202100426.	1.3	6
23	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
24	Specific recognition of toxic allyl alcohol by pore-functionalized metal–organic frameworks. Molecular Systems Design and Engineering, 2020, 5, 469-476.	1.7	8
25	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	1.2	22
26	A Water-Stable Cationic Metal–Organic Framework with Hydrophobic Pore Surfaces as an Efficient Scavenger of Oxo-Anion Pollutants from Water. ACS Applied Materials & Interfaces, 2020, 12, 41810-41818.	4.0	51
27	Nanotrap Grafted Anion Exchangeable Hybrid Materials for Efficient Removal of Toxic Oxoanions from Water. ACS Central Science, 2020, 6, 1534-1541.	5.3	54
28	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	3.0	126
29	A Waterâ€Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se ^{VI} and As ^V and Crystallographic Insight into the Ionâ€Exchange Mechanism. Angewandte Chemie - International Edition, 2020, 59, 7788-7792.	7.2	79
30	A Waterâ€Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se VI and As V and Crystallographic Insight into the Ionâ€Exchange Mechanism. Angewandte Chemie, 2020, 132, 7862-7866.	1.6	13
31	Metal-organic frameworks for detection and desensitization of environmentally hazardous nitro-explosives and related high energy materials. , 2019, , 231-283.		4
32	Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants. , 2019, , 95-140.		6
33	Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chemistry - an Asian Journal, 2019, 14, 3096-3108.	1.7	66
34	Probing the Role of Anions in Influencing the Structure, Stability, and Properties in Neutral N-Donor Linker Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 7046-7054.	1.4	23
35	Fluorescent "Turnâ€on―Sensing Based on Metal–Organic Frameworks (MOFs). Chemistry - an Asian Journal, 2019, 14, 4506-4519.	1.7	140
36	A hybrid blue perovskite@metal–organic gel (MOG) nanocomposite: simultaneous improvement of luminescence and stability. Chemical Science, 2019, 10, 10524-10530.	3.7	30

#	Article	IF	Citations
37	Ultrastable Luminescent Hybrid Bromide Perovskite@MOF Nanocomposites for the Degradation of Organic Pollutants in Water. ACS Applied Nano Materials, 2019, 2, 1333-1340.	2.4	102
38	N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 2019, 395, 146-192.	9.5	98
39	Hydrophobic metal-organic frameworks: Potential toward emerging applications. APL Materials, 2019, 7, 050701.	2.2	40
40	Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7456-7478.	3.2	189
41	Synthesis and structural elucidation of neutral N-donor linker based bi-porous isostructural cationic metal-organic frameworks. Inorganica Chimica Acta, 2019, 486, 401-405.	1.2	3
42	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 1053-1057.	1.6	8
43	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 1041-1045.	7.2	45
44	Selective Recognition of Hg ²⁺ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorganic Chemistry, 2018, 57, 2360-2364.	1.9	131
45	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	1.9	50
46	Metal–Organic Framework-Based Selective Sensing of Biothiols via Chemidosimetric Approach in Water. ACS Omega, 2018, 3, 254-258.	1.6	36
47	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
48	Metal-Organic Frameworks: An Advanced Class of Anion-Exchange Materials. Series on Chemistry, Energy and the Environment, 2018, , 325-375.	0.3	2
49	Metalâ€Organic Frameworks (MOFs) as Functional Supramolecular Architectures for Anion Recognition and Sensing. Chemical Record, 2018, 18, 154-164.	2.9	39
50	Multifunctional Behavior of Sulfonate-Based Hydrolytically Stable Microporous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 39049-39055.	4.0	18
51	Post-synthetically modified metal–organic framework as a scaffold for selective bisulphite recognition in water. Polyhedron, 2018, 156, 1-5.	1.0	17
52	Selfâ€Assembled, Fluorineâ€Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry - A European Journal, 2018, 24, 11771-11778.	1.7	8
53	Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker and SiF62â^ Anion. Crystals, 2018, 8, 37.	1.0	16
54	Chemically stable ionic viologen-organic network: an efficient scavenger of toxic oxo-anions from water. Chemical Science, 2018, 9, 7874-7881.	3.7	91

#	Article	IF	Citations
55	Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1, 1384-1388.	3.2	34
56	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	18.7	2,457
57	Polar Pore Surface Guided Selective CO ₂ Adsorption in a Prefunctionalized Metalâ€"Organic Framework. Crystal Growth and Design, 2017, 17, 3581-3587.	1.4	34
58	Enhanced proton conduction by post-synthetic covalent modification in a porous covalent framework. Journal of Materials Chemistry A, 2017, 5, 13659-13664.	5.2	38
59	Toxic Aromatics Induced Responsive Facets for a Pore Surface Functionalized Luminescent Coordination Polymer. Inorganic Chemistry, 2017, 56, 6864-6869.	1.9	10
60	Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chemical Communications, 2017, 53, 1253-1256.	2.2	56
61	Guest-Responsive Metal–Organic Frameworks as Scaffolds for Separation and Sensing Applications. Accounts of Chemical Research, 2017, 50, 2457-2469.	7.6	241
62	Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks. Inorganic Chemistry, 2017, 56, 9710-9715.	1.9	1
63	Metal–organic frameworks (MOFs) for sensing applications. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1329-C1329.	0.0	0
64	Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature. Beilstein Journal of Organic Chemistry, 2016, 12, 1981-1986.	1.3	14
65	A Bifunctional Metal–Organic Framework: Striking CO ₂ â€Selective Sorption Features along with Guestâ€Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, 702-707.	1.3	12
66	Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration of an Electronâ€Rich and â€Deficient Pore Surface. Chemistry - A European Journal, 2016, 22, 4931-4937.	1.7	36
67	Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chemical Communications, 2016, 52, 8215-8218.	2.2	76
68	Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln ₂ (Ln = Dy and Gd) Complexes. Inorganic Chemistry, 2016, 55, 11283-11298.	1.9	83
69	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	1.7	91
70	Frontispiece: A Bifunctional Metal-Organic Framework: Striking CO2 -Selective Sorption Features along with Guest-Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, .	1.3	0
71	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie - International Edition, 2016, 55, 10667-10671.	7.2	334
72	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie, 2016, 128, 10825-10829.	1.6	76

#	Article	IF	CITATIONS
73	Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. Journal of Physical Chemistry Letters, 2016, 7, 2945-2950.	2.1	127
74	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie - International Edition, 2016, 55, 7811-7815.	7.2	302
75	A Postâ€ S ynthetically Modified MOF for Selective and Sensitive Aqueousâ€Phase Detection of Highly Toxic Cyanide lons. Chemistry - A European Journal, 2016, 22, 864-868.	1.7	91
76	High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chemical Communications, 2016, 52, 8459-8462.	2.2	32
77	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie, 2016, 128, 7942-7946.	1.6	59
78	Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm, 2016, 18, 2994-3007.	1.3	189
79	OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material. Sensors and Actuators B: Chemical, 2016, 223, 114-122.	4.0	58
80	lonic metal-organic frameworks (iMOFs): Design principles and applications. Coordination Chemistry Reviews, 2016, 307, 313-341.	9.5	261
81	Neutral N-donor ligand based flexible metal–organic frameworks. Dalton Transactions, 2016, 45, 4060-4072.	1.6	73
82	A Nitroâ€Functionalized Metal–Organic Framework as a Reactionâ€Based Fluorescence Turnâ€On Probe for Rapid and Selective H ₂ S Detection. Chemistry - A European Journal, 2015, 21, 9994-9997.	1.7	93
83	Coherent Fusion of Water Array and Protonated Amine in a Metal–Sulfate-Based Coordination Polymer for Proton Conduction. Inorganic Chemistry, 2015, 54, 5366-5371.	1.9	16
84	Selective Detection of 2,4,6-Trinitrophenol (TNP) by a π-Stacked Organic Crystalline Solid in Water. Crystal Growth and Design, 2015, 15, 3493-3497.	1.4	70
85	Single-crystal-to-single-crystal transformation of an anion exchangeable dynamic metal–organic framework. CrystEngComm, 2015, 17, 8796-8800.	1.3	20
86	Aqueous phase nitric oxide detection by an amine-decorated metal–organic framework. Chemical Communications, 2015, 51, 6111-6114.	2.2	83
87	Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Transactions, 2015, 44, 15175-15180.	1.6	161
88	Chiral biomolecule based dodecanuclear dysprosium(<scp>iii</scp>)â€"copper(<scp>ii</scp>) clusters: structural analyses and magnetic properties. Inorganic Chemistry Frontiers, 2015, 2, 854-859.	3.0	9
89	Exploiting Framework Flexibility of a Metal–Organic Framework for Selective Adsorption of Styrene over Ethylbenzene. Inorganic Chemistry, 2015, 54, 4403-4408.	1.9	50
90	An Amideâ€Functionalized Dynamic Metal–Organic Framework Exhibiting Visual Colorimetric Anion Exchange and Selective Uptake of Benzene over Cyclohexane. Chemistry - A European Journal, 2015, 21, 7071-7076.	1.7	56

#	Article	IF	CITATIONS
91	Reversible structural transformations in a Co(II)-based 2D dynamic metal-organic framework showing selective solvent uptake. Journal of Chemical Sciences, 2015, 127, 627-633.	0.7	5
92	Exploitation of Guest Accessible Aliphatic Amine Functionality of a Metal–Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Crystal Growth and Design, 2015, 15, 4627-4634.	1.4	137
93	A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 2015, 51, 15386-15389.	2.2	64
94	Selective Anion Exchange and Tunable Luminescent Behaviors of Metal–Organic Framework Based Supramolecular Isomers. Inorganic Chemistry, 2015, 54, 110-116.	1.9	53
95	Selective and Sensitive Aqueousâ€Phase Detection of 2,4,6â€Trinitrophenol (TNP) by an Amineâ€Functionalized Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 965-969.	1.7	297
96	Anionâ€Responsive Tunable Bulkâ€Phase Homochirality and Luminescence of a Cationic Framework. Chemistry - A European Journal, 2014, 20, 12399-12404.	1.7	31
97	Guest driven structural transformation studies of a luminescent metal–organic framework. Journal of Chemical Sciences, 2014, 126, 1417-1422.	0.7	6
98	Slow Magnetic Relaxation in an Asymmetrically Coupled Heptanuclear Dysprosium(III)–Nickel(II) Architecture. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 151-156.	0.8	4
99	Twoâ€inâ€One: Inherent Anhydrous and Waterâ€Assisted High Proton Conduction in a 3D Metal–Organic Framework. Angewandte Chemie - International Edition, 2014, 53, 2638-2642.	7.2	367
100	Stimulusâ€Responsive Metal–Organic Frameworks. Chemistry - an Asian Journal, 2014, 9, 2358-2376.	1.7	109
101	Guestâ€Responsive Function of a Dynamic Metal–Organic Framework with a Ï€ Lewis Acidic Pore Surface. Chemistry - A European Journal, 2014, 20, 15303-15308.	1.7	43
102	Dynamic Metal–Organic Framework with Anion-Triggered Luminescence Modulation Behavior. Inorganic Chemistry, 2014, 53, 12225-12227.	1.9	37
103	Capsule voided nanospace confinement in a π-stacked supramolecular organic solid. CrystEngComm, 2014, 16, 4691.	1.3	9
104	Gas Adsorption, Magnetism, and Single-Crystal to Single-Crystal Transformation Studies of a Three-Dimensional Mn(II) Porous Coordination Polymer. Crystal Growth and Design, 2014, 14, 5585-5592.	1.4	33
105	A fluorescent metal–organic framework for highly selective detection of nitro explosives in the aqueous phase. Chemical Communications, 2014, 50, 8915-8918.	2.2	486
106	Structures and Magnetic Properties of Two Analogous Dy ₆ Wheels with Electron-Donation and -Withdrawal Effects. Inorganic Chemistry, 2014, 53, 7554-7560.	1.9	30
107	Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Scientific Reports, 2014, 4, 7053.	1.6	109
108	Framework-Flexibility Driven Selective Sorption of p-Xylene over Other Isomers by a Dynamic Metal-Organic Framework. Scientific Reports, 2014, 4, 5761.	1.6	81

#	Article	IF	Citations
109	Amino Acid Based Dynamic Metal–Biomolecule Frameworks. Chemistry - A European Journal, 2013, 19, 11178-11183.	1.7	27
110	Structural Dynamism and Controlled Chemical Blocking/Unblocking of Active Coordination Space of a Soft Porous Crystal. Inorganic Chemistry, 2013, 52, 12784-12789.	1.9	16
111	Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013, 15, 9465.	1.3	64
112	Dynamic Structural Behavior and Anionâ€Responsive Tunable Luminescence of a Flexible Cationic Metal–Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 998-1002.	7.2	180
113	Highly Selective Detection of Nitro Explosives by a Luminescent Metal–Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 2881-2885.	7.2	1,206
114	A Continuous π-Stacked Starfish Array of Two-Dimensional Luminescent MOF for Detection of Nitro Explosives. Crystal Growth and Design, 2013, 13, 3716-3721.	1.4	157
115	An asymmetrically connected hexanuclear Dylll6 cluster exhibiting slow magnetic relaxation. Inorganic Chemistry Communication, 2013, 35, 144-148.	1.8	17
116	A Homochiral Luminescent 2D Porous Coordination Polymer with Collagen-Type Triple Helices Showing Selective Guest Inclusion. Inorganic Chemistry, 2012, 51, 4644-4649.	1.9	32
117	Role of Temperature on Framework Dimensionality: Supramolecular Isomers of Zn ₃ (RCOO) ₈ Based Metal Organic Frameworks. Crystal Growth and Design, 2012, 12, 572-576.	1.4	78
118	A carboxylate-based dinuclear dysprosium(iii) cluster exhibiting slow magnetic relaxation behaviour. Dalton Transactions, 2012, 41, 7695.	1.6	61
119	Selective CO ₂ Adsorption in a Robust and Water-Stable Porous Coordination Polymer with New Network Topology. Inorganic Chemistry, 2012, 51, 572-576.	1.9	94
120	Nitrate-Bridged "Pseudo-Double-Propeller―Type Lanthanide(III)–Copper(II) Heterometallic Clusters: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry, 2012, 51, 9159-9161.	1.9	42
121	Bistable Dynamic Coordination Polymer Showing Reversible Structural and Functional Transformations. Inorganic Chemistry, 2012, 51, 8317-8321.	1.9	17
122	Diversity of binding of sulfate and nitrate anions with laterally asymmetric aza cryptands. CrystEngComm, 2010, 12, 413-419.	1.3	13
123	Binding of various anions in laterally non-symmetric aza-oxa cryptands through H-bonds: characterization of water clusters of different nuclearity. CrystEngComm, 2010, 12, 2967.	1.3	17
124	Control of Structure Dimensionality and Functional Studies of Flexible Cu ^{II} Coordination Polymers. Chemistry - an Asian Journal, 2009, 4, 870-875.	1.7	36
125	New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 2009, 48, 7970-7976.	1.9	28
126	Coordination polymers with pyridine-2,4,6-tricarboxylic acid and alkaline-earth/lanthanide/transition metals: synthesis and X-ray structures. Dalton Transactions, 2009, , 1644.	1.6	85

#	Article	IF	CITATIONS
127	Halide binding in laterally non-symmetric aza-oxa cryptands through N/O/C–Hâ√halide interactions with characterization of small water clusters. Dalton Transactions, 2009, , 6496.	1.6	16
128	A Dynamic, Isocyanurateâ€Functionalized Porous Coordination Polymer. Angewandte Chemie - International Edition, 2008, 47, 3403-3406.	7.2	154
129	A Bistable Porous Coordination Polymer with a Bondâ€Switching Mechanism Showing Reversible Structural and Functional Transformations. Angewandte Chemie - International Edition, 2008, 47, 8843-8847.	7.2	182
130	Water dimers connect [Cu(cda)(py)3] (cda=pyridine-4-hydroxy-2,6-dicarboxylate, py=pyridine) complex units to left- and right-handed helices that form a tubular coordination polymer through supramolecular bonding. Inorganica Chimica Acta, 2008, 361, 56-62.	1.2	17
131	Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand. CrystEngComm, 2008, 10, 1739.	1.3	68
132	Reversible Topochemical Transformation of a Soft Crystal of a Coordination Polymer. Angewandte Chemie - International Edition, 2007, 46, 7965-7968.	7.2	202
133	Laterally non-symmetric aza cryptand molecules stitched by water. Structural Chemistry, 2007, 18, 145-148.	1.0	2
134	Self-assembly of alternating left- and right-handed infinite Cd(II) helicates into a 2D open framework structure. Journal of Molecular Structure, 2006, 796, 119-122.	1.8	16
135	Coordination polymers built from Cu(II) and pyrazine-2,3,5,6-tetracarboxylate or pyridine-2,4,6-tricarboxylate: Structural and magnetic studies. Inorganica Chimica Acta, 2006, 359, 468-474.	1.2	37
136	Supramolecularly assembled pentameric and octameric water clusters stabilized by a mixed complex of Ni(II). Inorganica Chimica Acta, 2006, 359, 1685-1689.	1.2	47
137	Decameric Water Clusters Shaped as Two Parallel Cyclic Pentamers with Staggered Conformation Stabilize Supramolecularly Bonded Infinite Chains of H2PO4– Ions. European Journal of Inorganic Chemistry, 2006, 2006, 1341-1344.	1.0	21
138	Infinite Chains of Quasi-Planar Hexameric Water Clusters Stabilized in a Metal-Organic Framework Built from Coll and Pyrazine- 2,3,5,6-tetracarboxylic Acid. European Journal of Inorganic Chemistry, 2005, 2005, 4880-4885.	1.0	57
139	Octameric Water Clusters of Staircase Structure Present in a Metal-Organic Framework Built from Helical Lanthanide Coordination Polymers. European Journal of Inorganic Chemistry, 2005, 2005, 4886-4889.	1.0	72
140	Self-assembly of a Co(II) dimer through H-bonding of water molecules to a 3D open-framework structure. Journal of Chemical Sciences, 2005, 117, 23-26.	0.7	9
141	Mn(II) Staircase Structures Stitched by Water Clusters to a 3D Metal-Organic Open Framework:  X-ray Structural and Magnetic Studies. Inorganic Chemistry, 2005, 44, 3856-3862.	1.9	119
142	Coordination Polymers of La(III) as Bunched Infinite Nanotubes and Their Conversion into an Open-Framework Structure. Inorganic Chemistry, 2005, 44, 3156-3161.	1.9	129
143	Characterization of 3-D Metalâ^'Organic Frameworks Formed through Hydrogen Bonding Interactions of 2-D Networks with Rectangular Voids by Coll- and Nill-Pyridine-2,6-dicarboxylate and 4,4â€~-Bipyridine or 1,2-Di(pyridyl)ethylene. Crystal Growth and Design, 2005, 5, 623-629.	1.4	119
144	Metalâ^'Organic Framework H-Bonded Like a Polycatenane:Â Coexistence of Acyclic Water Trimer and Nonamer. Inorganic Chemistry, 2005, 44, 5553-5555.	1.9	83

#	Article	IF	CITATIONS
145	A Dodecameric Water Cluster Built around a Cyclic Quasiplanar Hexameric Core in an Organic Supramolecular Complex of a Cryptand. Angewandte Chemie - International Edition, 2004, 43, 3577-3580.	7.2	221
146	A Dodecameric Water Cluster Built Around a Cyclic Quasiplanar Hexameric Core in an Organic Supramolecular Complex of a Cryptand. Angewandte Chemie - International Edition, 2004, 43, 4390-4390.	7.2	14
147	Metal–organic framework structures of Cu(ii) with pyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclic water tetramer. CrystEngComm, 2004, 6, 250-256.	1.3	109
148	Self-Assembly of Lanthanide Helicate Coordination Polymers into 3D Metal-Organic Framework Structures. Inorganic Chemistry, 2004, 43, 2293-2298.	1.9	155
149	Reactivity of Pyridine-2,4,6-tricarboxylic Acid toward Zn(II) Salts under Different Reaction Conditions. Inorganic Chemistry, 2004, 43, 5495-5497.	1.9	103
150	Puckered-Boat Conformation Hexameric Water Clusters Stabilized in a 2D Metalâ "Organic Framework Structure Built from Cu(II) and 1,2,4,5-Benzenetetracarboxylic Acid. Inorganic Chemistry, 2004, 43, 5180-5182.	1.9	185
151	Structure of a Discrete Hexadecameric Water Cluster in a Metalâ^'Organic Framework Structure. Inorganic Chemistry, 2004, 43, 6887-6889.	1.9	163
152	Coexistence of Water Dimer and Hexamer Clusters in 3D Metalâ "Organic Framework Structures of Ce(III) and Pr(III) with Pyridine-2,6-dicarboxylic Acid. Inorganic Chemistry, 2003, 42, 8250-8254.	1.9	273
153	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie, 0, , .	1.6	2