Gaël Nicolas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3195782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8780-8785.	3.3	1,110
2	The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal of Clinical Investigation, 2002, 110, 1037-1044.	3.9	1,079
3	Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4596-4601.	3.3	780
4	The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal of Clinical Investigation, 2002, 110, 1037-1044.	3.9	715
5	The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. Journal of Clinical Investigation, 2003, 111, 91-98.	3.9	444
6	Hepcidin, A New Iron Regulatory Peptide. Blood Cells, Molecules, and Diseases, 2002, 29, 327-335.	0.6	288
7	Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nature Genetics, 2003, 34, 97-101.	9.4	284
8	Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica, 2010, 95, 501-504.	1.7	146
9	Porphyrias: A 2015 update. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 412-425.	0.7	132
10	Functional differences between hepcidin 1 and 2 in transgenic mice. Blood, 2004, 103, 2816-2821.	0.6	105
11	Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice. Blood, 2005, 105, 4861-4864.	0.6	105
12	The microbiota shifts the iron sensing of intestinal cells. FASEB Journal, 2016, 30, 252-261.	0.2	91
13	Tyrosine Phosphorylation Regulates Alpha II Spectrin Cleavage by Calpain. Molecular and Cellular Biology, 2002, 22, 3527-3536.	1.1	90
14	Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood, 2006, 107, 2952-2958.	0.6	75
15	From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria. Human Molecular Genetics, 2018, 27, 1164-1173.	1.4	73
16	Mutation in human <i>CLPX</i> elevates levels of <i>δ-</i> aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8045-E8052.	3.3	69
17	Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cellsin vivo. Hepatology, 2005, 41, 1056-1064.	3.6	62
18	alphall-Spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochemical Journal, 2004, 378, 161-168.	1.7	56

GAëL NICOLAS

#	Article	IF	CITATIONS
19	Spectrin self-association site: characterization and study of β-spectrin mutations associated with hereditary elliptocytosis. Biochemical Journal, 1998, 332, 81-89.	1.7	48
20	Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discovery, 2019, 5, 150.	2.0	48
21	Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood, 2004, 103, 2841-2843.	0.6	46
22	LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: clinical and research implications in iron disorders. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1557-67.	1.4	43
23	αII-Spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts. Biochemical Journal, 2005, 388, 631-638.	1.7	42
24	Transferrin receptor 1 mRNA is downregulated in placenta of hepcidin transgenic embryos. FEBS Letters, 2004, 574, 187-191.	1.3	35
25	Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biology of the Cell, 2006, 98, 279-293.	0.7	30
26	Iron-deficiency anemia from matriptase-2 inactivation is dependent on the presence of functional Bmp6. Blood, 2011, 117, 647-650.	0.6	28
27	Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis. Blood, 2014, 124, 441-444.	0.6	28
28	Inactive matriptase-2 mutants found in IRIDA patients still repress hepcidin in a transfection assay despite having lost their serine protease activity. Human Mutation, 2012, 33, 1388-1396.	1.1	25
29	Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Molecular Genetics and Metabolism, 2019, 128, 190-197.	0.5	25
30	Erythroid-Progenitor-Targeted Gene Therapy Using Bifunctional TFR1 Ligand-Peptides in Human Erythropoietic Protoporphyria. American Journal of Human Genetics, 2019, 104, 341-347.	2.6	22
31	A Mutant αII-spectrin Designed to Resist Calpain and Caspase Cleavage Questions the Functional Importance of This Process in Vivo. Journal of Biological Chemistry, 2007, 282, 14226-14237.	1.6	20
32	The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover. Journal of Biological Chemistry, 2021, 297, 100972.	1.6	20
33	Properties of normal and mutant polypeptide fragments from the dimer self-association sites of human red cell spectrin. European Biophysics Journal, 1999, 28, 208-215.	1.2	19
34	Lack of the multidrug transporter MRP4/ABCC4 defines the PEL-negative blood group and impairs platelet aggregation. Blood, 2020, 135, 441-448.	0.6	18
35	Inherited glycosylphosphatidylinositol defects cause the rare Emm-negative blood phenotype and developmental disorders. Blood, 2021, 137, 3660-3669.	0.6	18
36	Identification of new partners of the epithelial sodium channel alpha subunit. Comptes Rendus - Biologies, 2003, 326, 615-624.	0.1	15

GAëL NICOLAS

#	Article	IF	CITATIONS
37	Phlebotomy as an efficient long-term treatment of congenital erythropoietic porphyria. Haematologica, 2021, 106, 913-917.	1.7	13
38	ls EPO therapy able to correct iron deficiency anaemia caused by matriptaseâ€2 deficiency?. British Journal of Haematology, 2011, 152, 498-500.	1.2	12
39	Iron deficiency and anemia in adolescent girls consuming predominantly plant-based diets in rural Ethiopia. Scientific Reports, 2019, 9, 17244.	1.6	12
40	A mutation in the iron-responsive element of <i>ALAS2</i> is a modifier of disease severity in a patient suffering from <i>CLPX</i> associated erythropoietic protoporphyria. Haematologica, 2021, 106, 2030-2033.	1.7	10
41	Iron deficiency markers in patients undergoing iron replacement therapy: a 9-year retrospective real-world evidence study using healthcare databases. Scientific Reports, 2020, 10, 14983.	1.6	9
42	Identification of ubiquitinated repeats in human erythroid α-spectrin. FEBS Journal, 2000, 267, 2812-2819.	0.2	8
43	Method of Site-Directed Mutagenesis Using Long Primer-Unique Site Elimination and Exonuclease III. BioTechniques, 1997, 22, 430-434.	0.8	6
44	αIIâ€spectrin controls calciumâ€regulated exocytosis in neuroendocrine chromaffin cells through neuronal Wiskott–Aldrich Syndrome protein interaction. IUBMB Life, 2020, 72, 544-552.	1.5	4
45	Proximal Giant Neurofilamentous Axonopathy in Mice Genetically Engineered to Resist Calpain and Caspase Cleavage of α-II Spectrin. Journal of Molecular Neuroscience, 2012, 47, 631-638.	1.1	2
46	ABCB6 Polymorphisms are not Overly Represented in Patients with Porphyria. Blood Advances, 2021, , .	2.5	2
47	Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia. Metabolites, 2022, 12, 262.	1.3	1
48	L'hepcidine, un contrÃ1e essentiel de l'absorption du fer. Medecine/Sciences, 2002, 18, 270-271.	0.0	0