
Emily S Cross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3195650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The McNorm library: creating and validating a new library of emotionally expressive whole body dance movements. Psychological Research, 2023, 87, 484-508.	1.7	1
2	People's dispositional cooperative tendencies towards robots are unaffected by robots' negative emotional displays in prisoner's dilemma games. Cognition and Emotion, 2022, 36, 995-1019.	2.0	5
3	Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction. International Journal of Social Robotics, 2021, 13, 1307-1333.	4.6	54
4	What Makes a Robot Social? A Review of Social Robots from Science Fiction to a Home or Hospital Near You. Current Robotics Reports, 2021, 2, 9-19.	7.9	82
5	Mind Meets Machine: Towards a Cognitive Science of Human–Machine Interactions. Trends in Cognitive Sciences, 2021, 25, 200-212.	7.8	52
6	Watch and Learn: The Cognitive Neuroscience of Learning from Others' Actions. Trends in Neurosciences, 2021, 44, 478-491.	8.6	30
7	Empathy and Schadenfreude in Human–Robot Teams. Journal of Cognition, 2021, 4, 35.	1.4	3
8	Social Cognition in the Age of Human–Robot Interaction. Trends in Neurosciences, 2020, 43, 373-384.	8.6	78
9	No evidence for enhanced likeability and social motivation towards robots after synchrony experience. Interaction Studies, 2020, 21, 7-23.	0.6	3
10	Human body motion captures visual attention and elicits pupillary dilation. Cognition, 2019, 193, 104029.	2.2	15
11	Fluid intelligence and working memory support dissociable aspects of learning by physical but not observational practice. Cognition, 2019, 190, 170-183.	2.2	8
12	A neurocognitive investigation of the impact of socializing with a robot on empathy for pain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180034.	4.0	29
13	From social brains to social robots: applying neurocognitive insights to human–robot interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180024.	4.0	95
14	Justify your alpha. Nature Human Behaviour, 2018, 2, 168-171.	12.0	310
15	The Perception of Emotion in Artificial Agents. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 852-864.	3.8	85
16	Cognitive and Social Neuroscience Methods for HRI. , 2018, , .		1
17	Decreased reward value of biological motion among individuals with autistic traits. Cognition, 2018, 171, 1-9.	2.2	19
18	Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions. Journal of Neuroscience, 2018, 38, 10114-10128.	3.6	15

EMILY S CROSS

#	Article	IF	CITATIONS
19	Dance Training Shapes Action Perception and Its Neural Implementation within the Young and Older Adult Brain. Neural Plasticity, 2018, 2018, 1-20.	2.2	15
20	From automata to animate beings: the scope and limits of attributing socialness to artificial agents. Annals of the New York Academy of Sciences, 2018, 1426, 93-110.	3.8	60
21	Anodal tDCS over Primary Motor Cortex Provides No Advantage to Learning Motor Sequences via Observation. Neural Plasticity, 2018, 2018, 1-14.	2.2	50
22	Neurodevelopmental perspectives on dance learning: Insights from early adolescence and young adulthood. Progress in Brain Research, 2018, 237, 243-277.	1.4	3
23	The influence of sensorimotor experience on the aesthetic evaluation of dance across the life span. Progress in Brain Research, 2018, 237, 291-316.	1.4	12
24	Using guitar learning to probe the Action Observation Network's response to visuomotor familiarity. NeuroImage, 2017, 156, 174-189.	4.2	29
25	Have I grooved to this before? Discriminating practised and observed actions in a novel context. Acta Psychologica, 2017, 175, 42-49.	1.5	9
26	Learning to tie the knot: The acquisition of functional object representations by physical and observational experience. PLoS ONE, 2017, 12, e0185044.	2.5	13
27	The Impact of Experience on Affective Responses during Action Observation. PLoS ONE, 2016, 11, e0154681.	2.5	16
28	The timing and precision of action prediction in the aging brain. Human Brain Mapping, 2016, 37, 54-66.	3.6	13
29	Understanding self and others: from origins to disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150066.	4.0	3
30	The shaping of social perception by stimulus and knowledge cues to human animacy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150075.	4.0	57
31	Shaping and reshaping the aesthetic brain: Emerging perspectives on the neurobiology of embodied aesthetics. Neuroscience and Biobehavioral Reviews, 2016, 62, 56-68.	6.1	85
32	There or not there? A multidisciplinary review and research agenda on the impact of transparent barriers on human perception, action, and social behavior. Frontiers in Psychology, 2015, 6, 1381.	2.1	11
33	Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network. Cerebral Cortex, 2015, 25, 4799-4811.	2.9	58
34	Dynamic Modulation of the Action Observation Network by Movement Familiarity. Journal of Neuroscience, 2015, 35, 1561-1572.	3.6	82
35	Disentangling neural processes of egocentric and allocentric mental spatial transformations using whole-body photos of self and other. NeuroImage, 2015, 116, 30-39.	4.2	26
36	Dance experience sculpts aesthetic perception and related brain circuits. Annals of the New York Academy of Sciences, 2015, 1337, 130-139.	3.8	50

EMILY S CROSS

#	Article	IF	CITATIONS
37	A review and critical analysis of how cognitive neuroscientific investigations using dance can contribute to sport psychology. International Review of Sport and Exercise Psychology, 2014, 7, 42-71.	5.7	16
38	Testing key predictions of the associative account of mirror neurons in humans using multivariate pattern analysis. Behavioral and Brain Sciences, 2014, 37, 213-215.	0.7	4
39	The Control of Automatic Imitation Based on Bottom–Up and Top–Down Cues to Animacy: Insights from Brain and Behavior. Journal of Cognitive Neuroscience, 2014, 26, 2503-2513.	2.3	65
40	Motor Control in Action: Using Dance to Explore the Intricate Choreography Between Action Perception and Production in the Human Brain. Advances in Experimental Medicine and Biology, 2014, 826, 147-160.	1.6	4
41	The influence of visual training on predicting complex action sequences. Human Brain Mapping, 2013, 34, 467-486.	3.6	63
42	Supramodal and modality-sensitive representations of perceived action categories in the human brain. Experimental Brain Research, 2013, 230, 345-357.	1.5	3
43	Action observation in the infant brain: The role of body form and motion. Social Neuroscience, 2013, 8, 22-30.	1.3	44
44	Action Prediction in Younger versus Older Adults: Neural Correlates of Motor Familiarity. PLoS ONE, 2013, 8, e64195.	2.5	37
45	The impact of sensorimotor experience on affective evaluation of dance. Frontiers in Human Neuroscience, 2013, 7, 521.	2.0	40
46	Physical experience leads to enhanced object perception in parietal cortex: Insights from knot tying. Neuropsychologia, 2012, 50, 3207-3217.	1.6	33
47	Robotic movement preferentially engages the action observation network. Human Brain Mapping, 2012, 33, 2238-2254.	3.6	160
48	Predicting others' actions via grasp and gaze: evidence for distinct brain networks. Psychological Research, 2012, 76, 494-502.	1.7	15
49	Representing others' actions: the role of expertise in the aging mind. Psychological Research, 2012, 76, 525-541.	1.7	38
50	Simulating and predicting others' actions. Psychological Research, 2012, 76, 383-387.	1.7	12
51	Neurocognitive control in dance perception and performance. Acta Psychologica, 2012, 139, 300-308.	1.5	244
52	Neuroaesthetics and beyond: new horizons in applying the science of the brain to the art of dance. Phenomenology and the Cognitive Sciences, 2012, 11, 5-16.	1.8	80
53	From dancing robots to action aesthetics: Re-examining mirror system activity as a function of the observer's experience. Neuroscience Research, 2011, 71, e44.	1.9	1
54	The impact of aesthetic evaluation and physical ability on dance perception. Frontiers in Human Neuroscience, 2011, 5, 102.	2.0	109

EMILY S CROSS

#	Article	IF	CITATIONS
55	Eye Can See What You Want: Posterior Intraparietal Sulcus Encodes the Object of an Actor's Gaze. Journal of Cognitive Neuroscience, 2011, 23, 3400-3409.	2.3	14
56	No two are the same: Body shape <i>is</i> part of identifying others. Cognitive Neuroscience, 2011, 2, 207-208.	1.4	11
57	Contorted and ordinary body postures in the human brain. Experimental Brain Research, 2010, 204, 397-407.	1.5	41
58	Sensitivity of the Action Observation Network to Physical and Observational Learning. Cerebral Cortex, 2009, 19, 315-326.	2.9	391
59	Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia, 2009, 47, 1553-1562.	1.6	118
60	Transient disruption of M1 during response planning impairs subsequent offline consolidation. Experimental Brain Research, 2009, 196, 303-309.	1.5	10
61	Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 2009, 30, 1383-1392.	2.6	146
62	Neural Substrates of Contextual Interference during Motor Learning Support a Model of Active Preparation. Journal of Cognitive Neuroscience, 2007, 19, 1854-1871.	2.3	116
63	On-line grasp control is mediated by the contralateral hemisphere. Brain Research, 2007, 1175, 76-84.	2.2	53
64	Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 2006, 31, 1257-1267.	4.2	684
65	Do alternative names block young and older adults' retrieval of proper names?. Brain and Language, 2004, 89, 174-181.	1.6	68

66 The Impact of Action Expertise on Shared Representations. , 0, , 541-562.

1