Jie Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3195356/publications.pdf Version: 2024-02-01

LE SHEN

#	Article	IF	CITATIONS
1	The presenilin hypothesis of Alzheimer's disease: Evidence for a loss-of-function pathogenic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 403-409.	7.1	416
2	Presenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer's Disease. Neuron, 2015, 85, 967-981.	8.1	190
3	Presenilin-1 mutations and Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 629-631.	7.1	164
4	Mitochondria and Dopamine. Neuron, 2004, 43, 301-304.	8.1	104
5	Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. Neuron, 2017, 96, 796-807.e6.	8.1	100
6	Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science, 2020, 368, 874-877.	12.6	97
7	PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions. Current Biology, 2014, 24, 1854-1865.	3.9	83
8	Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1. Molecular Cell, 2015, 60, 21-34.	9.7	74
9	Protein Kinases Linked to the Pathogenesis of Parkinson's Disease. Neuron, 2004, 44, 575-577.	8.1	56
10	APP Family Regulates Neuronal Excitability and Synaptic Plasticity but Not Neuronal Survival. Neuron, 2020, 108, 676-690.e8.	8.1	51
11	Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano, 2016, 10, 3069-3077.	14.6	37
12	Partial Loss of Presenilin Impairs Age-Dependent Neuronal Survival in the Cerebral Cortex. Journal of Neuroscience, 2014, 34, 15912-15922.	3.6	35
13	Brain region specific mitophagy capacity could contribute to selective neuronal vulnerability in Parkinson's disease. Proteome Science, 2011, 9, 59.	1.7	34
14	Function and Dysfunction of Presenilin. Neurodegenerative Diseases, 2014, 13, 61-63.	1.4	32
15	Impaired Neurotransmitter Release in Alzheimer's and Parkinson's Diseases. Neurodegenerative Diseases, 2010, 7, 80-83.	1.4	31
16	Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain. Neuron, 2016, 90, 417-422.	8.1	30
17	CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters. Scientific Reports, 2017, 7, 18004.	3.3	30
18	Three-dimensional nanolithography guided by DNA modular epitaxy. Nature Materials, 2021, 20, 683-690.	27.5	29

JIE SHEN

#	Article	lF	CITATIONS
19	Heterogeneous populations of ES cells in the generation of a floxedPresenilin-1 allele. Genesis, 2000, 26, 5-8.	1.6	28
20	Synaptic function of nicastrin in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8973-8978.	7.1	27
21	Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Molecular Neurodegeneration, 2017, 12, 48.	10.8	22
22	An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging <i>Drosophila</i> Brain. Genetics, 2017, 206, 1479-1493.	2.9	19
23	Role of Presenilinâ€1 in Murine Neural Development. Annals of the New York Academy of Sciences, 2000, 920, 165-170.	3.8	13
24	Dominant negative mechanism of <i>Presenilin-1</i> mutations in FAD. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12635-12637.	7.1	13
25	A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics. Cell Research, 2015, 25, 394-397.	12.0	12
26	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	14.6	12
27	Protocols for assessing neurodegenerative phenotypes in Alzheimer's mouse models. STAR Protocols, 2021, 2, 100654.	1.2	8
28	Regulation of gene expression by the APP family in the adult cerebral cortex. Scientific Reports, 2022, 12, 66.	3.3	8
29	Adult hippocampal neurogenesis occurs in the absence of Presenilin 1 and Presenilin 2. Scientific Reports, 2018, 8, 17931.	3.3	7
30	Motor Impairments and Dopaminergic Defects Caused by Loss of Leucine-Rich Repeat Kinase Function in Mice. Journal of Neuroscience, 2022, 42, 4755-4765.	3.6	6
31	Inactivation of Presenilin in inhibitory neurons results in decreased GABAergic responses and enhanced synaptic plasticity. Molecular Brain, 2021, 14, 85.	2.6	4
32	Differential modulation of short-term plasticity at hippocampal mossy fiber and Schaffer collateral synapses by mitochondrial Ca2+. PLoS ONE, 2020, 15, e0240610.	2.5	0
33	Confined Growth of Metal Nanoparticles Within 3D DNA Origami Molds. Methods in Molecular Biology, 2017, 1500, 237-244.	0.9	0