
Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3194258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems. Applicable Analysis, 2022, 101, 1848-1870.	0.6	7
2	Analysis of a hidden memory variably distributed-order space-fractional diffusion equation. Applied Mathematics Letters, 2022, 124, 107617.	1.5	9
3	Analysis and discretization of a variable-order fractional wave equation. Communications in Nonlinear Science and Numerical Simulation, 2022, 104, 106047.	1.7	10
4	WELL-POSEDNESS AND REGULARITY OF CAPUTO–HADAMARD TIME-FRACTIONAL DIFFUSION EQUATIONS. Fractals, 2022, 30, .	1.8	3
5	Error Estimate of Finite Element Approximation for Two-Sided Space-Fractional Evolution Equation with Variable Coefficient. Journal of Scientific Computing, 2022, 90, 1.	1.1	3
6	Temporal Second-Order Finite Difference Schemes for Variable-Order Time-Fractional Wave Equations. SIAM Journal on Numerical Analysis, 2022, 60, 104-132.	1.1	10
7	A fast numerical scheme for a variably distributed-order time-fractional diffusion equation and its analysis. Computers and Mathematics With Applications, 2022, 108, 24-32.	1.4	4
8	Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order. Fractal and Fractional, 2022, 6, 114.	1.6	1
9	Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation. Journal of Scientific Computing, 2022, 91, 1.	1.1	6
10	Discretization and Analysis of an Optimal Control of a Variable-Order Time-Fractional Diffusion Equation with Pointwise Constraints. Journal of Scientific Computing, 2022, 91, 1.	1.1	4
11	A viscoelastic Timoshenko beam: Model development, analysis, and investigation. Journal of Mathematical Physics, 2022, 63, .	0.5	4
12	Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA Journal of Numerical Analysis, 2021, 41, 1522-1545.	1.5	66
13	Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions. Applied Numerical Mathematics, 2021, 161, 1-12.	1.2	5
14	Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise. Chaos, Solitons and Fractals, 2021, 142, 110392.	2.5	21
15	Analysis and efficient implementation of alternating direction implicit finite volume method for Riesz spaceâ€fractional diffusion equations in two space dimensions. Numerical Methods for Partial Differential Equations, 2021, 37, 818-835.	2.0	7
16	A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. Journal of Computational and Applied Mathematics, 2021, 388, 113234.	1.1	11
17	Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 171-207.	0.8	11
18	Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval. Journal of Scientific Computing, 2021, 86, 1.	1.1	17

#	Article	IF	CITATIONS
19	A Hidden-Memory Variable-Order Time-Fractional Optimal Control Model: Analysis and Approximation. SIAM Journal on Control and Optimization, 2021, 59, 1851-1880.	1.1	38
20	An efficient positiveâ€definite blockâ€preconditioned finite volume solver for twoâ€sided fractional diffusion equations on composite mesh. Numerical Linear Algebra With Applications, 2021, 28, e2372.	0.9	1
21	A time-fractional diffusion equation with space-time dependent hidden-memory variable order: analysis and approximation. BIT Numerical Mathematics, 2021, 61, 1453-1481.	1.0	5
22	The unique identification of variable-order fractional wave equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	4
23	Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order. Nonlinear Dynamics, 2021, 104, 4203.	2.7	2
24	A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Applied Numerical Mathematics, 2021, 163, 15-29.	1.2	12
25	A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model. Advances in Computational Mathematics, 2021, 47, 1.	0.8	8
26	Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	11
27	Numerical discretization and fast approximation of a variably distributed-order fractional wave equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 2211-2232.	0.8	1
28	Solvability and approximation of two-side conservative fractional diffusion problems with variable-Coefficient based on least-Squares. Applied Mathematics and Computation, 2021, 406, 126229.	1.4	1
29	Optical coherence tomographic image denoising based on Chi-square similarity and fuzzy logic. Optics and Laser Technology, 2021, 143, 107298.	2.2	6
30	Time fractional stochastic differential equations driven by pure jump Lévy noise. Journal of Mathematical Analysis and Applications, 2021, 504, 125412.	0.5	2
31	Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: analysis and simulation. Journal of Inverse and Ill-Posed Problems, 2021, 29, 219-231.	0.5	5
32	Analysis and Fast Approximation of a Steady-State Spatially-Dependent Distributed-order Space-Fractional Diffusion Equation. Fractional Calculus and Applied Analysis, 2021, 24, 1477-1506.	1.2	1
33	A fast Galerkin finite element method for a space–time fractional Allen–Cahn equation. Journal of Computational and Applied Mathematics, 2020, 368, 112482.	1.1	15
34	An Indirect Finite Element Method for Variable-Coefficient Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates. Communications on Applied Mathematics and Computation, 2020, 2, 147-162.	0.7	6
35	An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations. Journal of Computational and Applied Mathematics, 2020, 371, 112673.	1.1	3
36	A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection–diffusion equations. Computers and Mathematics With Applications, 2020, 79, 2771-2783.	1.4	66

#	Article	IF	CITATIONS
37	Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations. Journal of Computational Physics, 2020, 405, 109127.	1.9	2
38	A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations. Journal of Scientific Computing, 2020, 85, 1.	1.1	9
39	A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Computers and Mathematics With Applications, 2020, 80, 1443-1458.	1.4	39
40	Uniquely identifying the variable order of time-fractional partial differential equations on general multi-dimensional domains. Inverse Problems in Science and Engineering, 2020, , 1-11.	1.2	7
41	An Error Estimate of a Numerical Approximation to a Hidden-Memory Variable-Order Space-Time Fractional Diffusion Equation. SIAM Journal on Numerical Analysis, 2020, 58, 2492-2514.	1.1	57
42	Analysis of a nonlinear variable-order fractional stochastic differential equation. Applied Mathematics Letters, 2020, 107, 106461.	1.5	15
43	A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Computer Methods in Applied Mechanics and Engineering, 2020, 366, 113053.	3.4	9
44	Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative. Chaos, Solitons and Fractals, 2020, 138, 109966.	2.5	20
45	An optimal-order error estimate of the lowest-order ELLAM-MFEM approximation to miscible displacement in three space dimensions. Journal of Computational and Applied Mathematics, 2020, 375, 112819.	1.1	2
46	Wellposedness and regularity of a variable-order space-time fractional diffusion equation. Analysis and Applications, 2020, 18, 615-638.	1.2	15
47	Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation. Applied Numerical Mathematics, 2020, 153, 234-247.	1.2	13
48	A fast method for variable-order space-fractional diffusion equations. Numerical Algorithms, 2020, 85, 1519-1540.	1.1	20
49	An Optimal-Order Numerical Approximation to Variable-order Space-fractional Diffusion Equations on Uniform or Graded Meshes. SIAM Journal on Numerical Analysis, 2020, 58, 330-352.	1.1	52
50	Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	10
51	A variably distributed-order time-fractional diffusion equation: Analysis and approximation. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113118.	3.4	27
52	Numerical Approximations for the Variable Coefficient Fractional Diffusion Equations with Non-smooth Data. Computational Methods in Applied Mathematics, 2020, 20, 573-589.	0.4	7
53	A preconditioned fast collocation method for a linear bond-based peridynamic model. Advances in Difference Equations, 2020, 2020, .	3.5	1
54	Least-Squared Mixed Variational Formulation Based on Space Decomposition for a Kind of Variable-Coefficient Fractional Diffusion Problems. Journal of Scientific Computing, 2019, 78, 687-709.	1.1	10

#	Article	IF	CITATIONS
55	An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection. Computer Physics Communications, 2019, 245, 106842.	3.0	26
56	Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations. Inverse Problems, 2019, 35, 125002.	1.0	12
57	A modified time-fractional diffusion equation and its finite difference method: Regularity and error analysis. Fractional Calculus and Applied Analysis, 2019, 22, 1014-1038.	1.2	0
58	A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Computational and Applied Mathematics, 2019, 38, 1.	1.0	7
59	An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions. Journal of Scientific Computing, 2019, 80, 1395-1418.	1.1	16
60	Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Applied Mathematics and Computation, 2019, 361, 98-111.	1.4	13
61	A finite element method for space–time directional fractional diffusion partial differential equations in the plane and its error analysis. Journal of Computational and Applied Mathematics, 2019, 362, 354-365.	1.1	12
62	A fast finite volume method for conservative space–time fractional diffusion equations discretized on space–time locally refined meshes. Computers and Mathematics With Applications, 2019, 78, 1345-1356.	1.4	35
63	Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Advances in Computational Mathematics, 2019, 45, 2647-2675.	0.8	35
64	Fast finite difference methods for space-time fractional partial differential equations in three space dimensions with nonlocal boundary conditions. Applied Numerical Mathematics, 2019, 145, 411-428.	1.2	10
65	Leastâ€squares mixed Galerkin formulation for variableâ€coefficient fractional differential equations with Dâ€N boundary condition. Mathematical Methods in the Applied Sciences, 2019, 42, 4331-4342.	1.2	2
66	Wellposedness and regularity of the variable-order time-fractional diffusion equations. Journal of Mathematical Analysis and Applications, 2019, 475, 1778-1802.	0.5	87
67	Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Applied Mathematics Letters, 2019, 95, 29-35.	1.5	11
68	A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations. Journal of Computational and Applied Mathematics, 2019, 360, 138-156.	1.1	35
69	A fractional phase-field model using an infinitesimal generator of α stable Lévy process. Journal of Computational Physics, 2019, 384, 253-269.	1.9	8
70	A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation. Journal of Computational Physics, 2019, 388, 316-334.	1.9	30
71	Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation. Journal of Computational and Applied Mathematics, 2019, 356, 248-266.	1.1	22
72	Feature-oriented singular value shrinkage for optical coherence tomography image. Optics and Lasers in Engineering, 2019, 114, 111-120.	2.0	14

#	Article	IF	CITATIONS
73	Stability and convergence of a Crank–Nicolson finite volume method for space fractional diffusion equations. Applied Numerical Mathematics, 2019, 139, 38-51.	1.2	22
74	On power law scaling dynamics for time-fractional phase field models during coarsening. Communications in Nonlinear Science and Numerical Simulation, 2019, 70, 257-270.	1.7	30
75	A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation. Journal of Scientific Computing, 2019, 78, 1724-1743.	1.1	23
76	Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods. , 2019, , 1331-1352.		1
77	A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh. Journal of Scientific Computing, 2018, 76, 913-942.	1.1	2
78	An integrated fractional partial differential equation and molecular dynamics model of anomalously diffusive transport in heterogeneous nano-pore structures. Journal of Computational Physics, 2018, 373, 1000-1012.	1.9	6
79	A fourth-order scheme for space fractional diffusion equations. Journal of Computational Physics, 2018, 373, 410-424.	1.9	20
80	POD/DEIM Reduced-Order Modeling of Time-Fractional Partial Differential Equations with Applications in Parameter Identification. Journal of Scientific Computing, 2018, 74, 220-243.	1.1	32
81	A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations with Fractional Derivative Boundary Conditions. Journal of Scientific Computing, 2018, 74, 1009-1033.	1.1	9
82	A High Order Finite Difference Method for Tempered Fractional Diffusion Equations with Applications to the CGMY Model. SIAM Journal of Scientific Computing, 2018, 40, A3322-A3343.	1.3	9
83	Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Computers and Mathematics With Applications, 2018, 76, 1876-1892.	1.4	72
84	Tempered fractional diffusion equations for pricing multi-asset options under CGMYe process. Computers and Mathematics With Applications, 2018, 76, 1500-1514.	1.4	5
85	Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography. Journal of Biomedical Optics, 2018, 23, 1.	1.4	19
86	A Fast Finite Difference Method for Tempered Fractional Diffusion Equations. Communications in Computational Physics, 2018, 24, .	0.7	3
87	Stable Lévy diffusion and related model fitting. Modern Stochastics: Theory and Applications, 2018, , 521-541.	0.2	0
88	Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations. Journal of Scientific Computing, 2017, 70, 429-449.	1.1	25
89	Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numerical Algorithms, 2017, 74, 153-173.	1.1	29
90	A preconditioned Fast Finite Difference Method for Space-Time Fractional Partial Differential Equations. Fractional Calculus and Applied Analysis, 2017, 20, 88-116.	1.2	36

#	Article	IF	CITATIONS
91	A mixedâ€ŧype Galerkin variational formulation and fast algorithms for variableâ€coefficient fractional diffusion equations. Mathematical Methods in the Applied Sciences, 2017, 40, 5018-5034.	1.2	24
92	Mixed-Type Galerkin Variational Principle and Numerical Simulation for a Generalized Nonlocal Elastic Model. Journal of Scientific Computing, 2017, 71, 660-681.	1.1	19
93	A variable-order fractional differential equation model of shape memory polymers. Chaos, Solitons and Fractals, 2017, 102, 473-485.	2.5	49
94	A divide-and-conquer fast finite difference method for space–time fractional partial differential equation. Computers and Mathematics With Applications, 2017, 73, 1233-1242.	1.4	31
95	A space–time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. Journal of Computational Physics, 2017, 347, 20-38.	1.9	42
96	A fast collocation method for a variable-coefficient nonlocal diffusion model. Journal of Computational Physics, 2017, 330, 114-126.	1.9	8
97	Wellposedness of Neumann boundary-value problems of space-fractional differential equations. Fractional Calculus and Applied Analysis, 2017, 20, 1356-1381.	1.2	10
98	A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 3529-3545.	0.5	7
99	A fast collocation method for a static bond-based linear peridynamic model. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 280-303.	3.4	15
100	Fast Iterative Solvers for Linear Systems Arising from Time-Dependent Space-Fractional Diffusion Equations. SIAM Journal of Scientific Computing, 2016, 38, A2806-A2826.	1.3	34
101	A fast finite volume method for conservative space-fractional diffusion equations in convex domains. Journal of Computational Physics, 2016, 310, 63-84.	1.9	44
102	Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. Journal of Computational and Applied Mathematics, 2016, 296, 480-498.	1.1	46
103	Uniform estimates for characteristics-mixed finite method for transient advection-dominated diffusion problems in two-dimensional space. Applied Mathematics and Computation, 2016, 280, 86-102.	1.4	3
104	A Fast Gradient Projection Method for a Constrained Fractional Optimal Control. Journal of Scientific Computing, 2016, 68, 1-20.	1.1	35
105	A fast method for a generalized nonlocal elastic model. Journal of Computational Physics, 2015, 297, 72-83.	1.9	3
106	A probabilistic collocation Eulerian–Lagrangian localized adjoint method on sparse grids for assessingCO2leakage through wells in randomly heterogeneous porous media. Computer Methods in Applied Mechanics and Engineering, 2015, 292, 35-53.	3.4	5
107	A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. Journal of Computational Physics, 2015, 299, 842-862.	1.9	40
108	A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in \$mathbb{R}^2\$. SIAM Journal of Scientific Computing, 2015, 37, A1614-A1635.	1.3	43

#	Article	IF	CITATIONS
109	A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Computer Methods in Applied Mechanics and Engineering, 2015, 290, 45-56.	3.4	46
110	A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numerical Methods for Partial Differential Equations, 2015, 31, 253-267.	2.0	31
111	A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. Journal of Computational Physics, 2015, 281, 67-81.	1.9	47
112	Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. Journal of Computational Physics, 2015, 293, 359-369.	1.9	34
113	Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations. SIAM Journal on Numerical Analysis, 2014, 52, 1292-1310.	1.1	65
114	A uniformly optimal-order estimate for finite volume method for advection-diffusion equations. Numerical Methods for Partial Differential Equations, 2014, 30, 17-43.	2.0	5
115	A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Computer Methods in Applied Mechanics and Engineering, 2014, 273, 19-36.	3.4	49
116	Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. Journal of Computational Physics, 2014, 258, 305-318.	1.9	100
117	Fast solution methods for space-fractional diffusion equations. Journal of Computational and Applied Mathematics, 2014, 255, 376-383.	1.1	40
118	A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. Journal of Computational Physics, 2013, 253, 50-63.	1.9	55
119	Uniform error estimates for triangular finite element solutions of advection-diffusion equations. Advances in Computational Mathematics, 2013, 38, 83-100.	0.8	3
120	A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. Journal of Computational Physics, 2013, 240, 49-57.	1.9	94
121	A Component-Based EulerianLagrangian Formulation for Multicomponent Multiphase Compositional Flow and Transport in Porous Media. SIAM Journal of Scientific Computing, 2013, 35, B462-B486.	1.3	9
122	Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations. SIAM Journal on Numerical Analysis, 2013, 51, 1088-1107.	1.1	101
123	A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations. SIAM Journal of Scientific Computing, 2012, 34, A2444-A2458.	1.3	185
124	A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. Journal of Computational Physics, 2012, 231, 7730-7738.	1.9	55
125	An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations. Journal of Computational Physics, 2011, 230, 7830-7839.	1.9	98
126	A characteristic difference method for the transient fractional convection–diffusion equations. Applied Numerical Mathematics, 2011, 61, 946-960.	1.2	26

#	Article	IF	CITATIONS
127	A fast characteristic finite difference method for fractional advection–diffusion equations. Advances in Water Resources, 2011, 34, 810-816.	1.7	132
128	An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 325-341.	0.5	4
129	A uniform estimate for the MMOC for twoâ€dimensional advectionâ€diffusion equations. Numerical Methods for Partial Differential Equations, 2010, 26, 1054-1069.	2.0	1
130	A preliminary study on multiscale ELLAM schemes for transient advectionâ€diffusion equations. Numerical Methods for Partial Differential Equations, 2010, 26, 1405-1419.	2.0	7
131	A direct O(Nlog2N) finite difference method for fractional diffusion equations. Journal of Computational Physics, 2010, 229, 8095-8104.	1.9	272
132	An Optimal-Order Error Estimate to ELLAM Schemes for Transient Advection-Diffusion Equations on Unstructured Meshes. SIAM Journal on Numerical Analysis, 2010, 48, 681-707.	1.1	7
133	A multiscale Eulerian–Lagrangian localized adjoint method for transient advection–diffusion equations with oscillatory coefficients. Computing and Visualization in Science, 2009, 12, 63-70.	1.2	7
134	Uniform optimal-order estimates for finite element methods for advection-diffusion equations. Journal of Systems Science and Complexity, 2009, 22, 555-559.	1.6	2
135	An optimal-order <mml:math <br="" altimg="si113.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><m estimate for nonsymmetric discontinuous Galerkin methods for a parabolic equation in multiple space dimensions. Computer Methods in Applied Mechanics and Engineering. 2009. 198. 2190-2197.</m </mml:mrow></mml:msup></mml:mrow></mml:math>	ıml:ŋŋ>2 </td <td>mml:mn></td>	mml:mn>
136	A uniform estimate for the ELLAM scheme for transport equations. Numerical Methods for Partial Differential Equations, 2008, 24, 535-554.	2.0	10
137	An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow. SIAM Journal on Numerical Analysis, 2008, 46, 2133-2152.	1.1	41
138	Uniform Estimates for Eulerian–Lagrangian Methods for Singularly Perturbed Time-Dependent Problems. SIAM Journal on Numerical Analysis, 2007, 45, 1305-1329.	1.1	27
139	An Eulerian-Lagrangian method for option pricing in finance. Numerical Methods for Partial Differential Equations, 2007, 23, 293-329.	2.0	0
140	An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations. Numerical Methods for Partial Differential Equations, 2007, 23, 1343-1367.	2.0	18
141	An Eulerian-Lagrangian Solution Technique for Single-Phase Compositional Flow in Three-Dimensional Porous Media. Computers and Mathematics With Applications, 2006, 52, 607-624.	1.4	11
142	A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations. Numerical Methods for Partial Differential Equations, 2006, 22, 577-599.	2.0	14
143	A numerical modeling of multicomponent compressible flows in porous media with multiple wells by an Eulerian-Lagrangian method. Computing and Visualization in Science, 2005, 8, 69-81.	1.2	8
144	A preliminary investigation on an ELLAM scheme for linear transport equations. Numerical Methods for Partial Differential Equations, 2003, 19, 22-43.	2.0	1

#	Article	IF	CITATIONS
145	A modified alternating-direction finite volume method for modeling secondary hydrocarbon migration and accumulation processes. Numerical Methods for Partial Differential Equations, 2003, 19, 254-270.	2.0	3
146	An upwind finite volume scheme and its maximum-principle-preserving ADI splitting for unsteady-state advection-diffusion equations. Numerical Methods for Partial Differential Equations, 2003, 19, 211-226.	2.0	6
147	An optimal-order error estimate for MMOC and MMOCAA schemes for multidimensional advection-reaction equations. Numerical Methods for Partial Differential Equations, 2002, 18, 69-84.	2.0	5
148	An ELLAM Scheme for Multidimensional Advection-Reaction Equations and Its Optimal-Order Error Estimate. SIAM Journal on Numerical Analysis, 2001, 38, 1846-1885.	1.1	14
149	A summary of numerical methods for time-dependent advection-dominated partial differential equations. Journal of Computational and Applied Mathematics, 2001, 128, 423-445.	1.1	220
150	An ELLAM-MFEM Solution Technique for Compressible Fluid Flows in Porous Media with Point Sources and Sinks. Journal of Computational Physics, 2000, 159, 344-376.	1.9	23
151	An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian-Lagrangian Localized Adjoint Method and Mixed Finite Element Methods. SIAM Journal of Scientific Computing, 2000, 22, 561-581.	1.3	88
152	An Optimal-Order Error Estimate for an ELLAM Scheme for Two-Dimensional Linear Advection-Diffusion Equations. SIAM Journal on Numerical Analysis, 2000, 37, 1338-1368.	1.1	35
153	Second-order characteristic methods for advection–diffusion equations and comparison to other schemes. Advances in Water Resources, 1999, 22, 741-768.	1.7	33
154	A Family of Eulerian–Lagrangian Localized Adjoint Methods for Multi-dimensional Advection-Reaction Equations. Journal of Computational Physics, 1999, 152, 120-163.	1.9	75
155	An ELLAM Scheme for Advection-Diffusion Equations in Two Dimensions. SIAM Journal of Scientific Computing, 1999, 20, 2160-2194.	1.3	97
156	A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses. Numerical Methods for Partial Differential Equations, 1998, 14, 739-780.	2.0	19
157	An Optimal-Order Estimate for Eulerian–Lagrangian Localized Adjoint Methods for Variable-Coefficient Advection-Reaction Problems. SIAM Journal on Numerical Analysis, 1996, 33, 318-348.	1.1	31
158	Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis. IMA Journal of Numerical Analysis, 1995, 15, 405-459.	1.5	71
159	Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis. Computational Mechanics, 1993, 12, 97-121.	2.2	29
160	An indirect collocation method for variable-order fractional wave equations on uniform or graded meshes and its optimal error estimates. International Journal of Computer Mathematics, 0, , 1-14.	1.0	2