Vittorio Di Cocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3194086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium lattice structures manufactured by EBM process: Effect of skin material on bending characteristics. Engineering Fracture Mechanics, 2022, 260, 108180.	4.3	12
2	Numerical Modelling of Fibre Metal Laminate Flexural Behaviour. Material Design and Processing Communications, 2022, 2022, 1-8.	0.9	0
3	Analysis of fracture characteristics in aluminium-CFRP hybrid laminate subject to three-point bending loading. Procedia Structural Integrity, 2022, 39, 173-178.	0.8	Ο
4	Bath chemical composition influence on intermetallic phases damage in hot dip galvanizing. Procedia Structural Integrity, 2022, 39, 574-581.	0.8	5
5	Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results. Metals, 2022, 12, 410.	2.3	9
6	Numerical Simulation of Traditional and Technological Zincâ€Based Coatings: Part I. Advanced Engineering Materials, 2022, 24, .	3.5	3
7	Hybrid structures in Titanium-Lattice/FRP: effect of skins material on bending characteristics. Procedia Structural Integrity, 2022, 41, 3-8.	0.8	1
8	Crack micromechanisms in cycled shape memory alloys. Procedia Structural Integrity, 2022, 41, 692-698.	0.8	1
9	Combination of discrete and finite element method to simulate damage in galvanised steel. Procedia Structural Integrity, 2022, 41, 254-259.	0.8	Ο
10	Damage analysis of Ti6Al4V lattice structures manufactured by electron beam melting process subjected to bending load. Material Design and Processing Communications, 2021, 3, .	0.9	5
11	Bending properties of titanium lattice structures produced by electron beam melting process. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1961-1970.	3.4	17
12	Numerical model development to predict the process-induced residual stresses in fibre metal laminates. Forces in Mechanics, 2021, 3, 100017.	2.8	3
13	A cyclic integrated microstructural-mechanical model for a shape memory alloy. International Journal of Fatigue, 2021, 153, 106473.	5.7	5
14	Standards for shape memory alloy applications. , 2021, , 77-111.		1
15	Failure energy and stiffness of titanium lattice specimens produced by electron beam melting process. Material Design and Processing Communications, 2021, 3, .	0.9	8
16	Failure criteria for real-time assessment of ductile cast irons subjected to various loading conditions. Smart Materials and Structures, 2021, 30, 017001.	3.5	2
17	Additive manufacturing processes for metals and effects of defects on mechanical strength: a review. Procedia Structural Integrity, 2021, 33, 498-508.	0.8	13
18	Cycling model for a NiTi Shape Memory Alloy. Procedia Structural Integrity, 2021, 33, 1035-1041.	0.8	1

#	Article	IF	CITATIONS
19	CFRP/aluminium fibre metal laminates: numerical model for mechanical properties simulation. Procedia Structural Integrity, 2021, 33, 824-831.	0.8	0
20	Failure energy and strength of Al/CFRP hybrid laminates under flexural load. Material Design and Processing Communications, 2020, 2, e109.	0.9	2
21	Study of the fracture behavior of a CuCrZr alloy. Material Design and Processing Communications, 2020, 2, e113.	0.9	4
22	Microstrain measurements and damage analysis during tensile loading of intercritical austempered ductile iron. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2744-2755.	3.4	1
23	Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1038-1050.	3.4	13
24	Relation between microstructural heterogeneities and damage mechanisms of a ferritic spheroidal graphite cast iron during tensile loading. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1262-1273.	3.4	11
25	Comparison between long and short beam flexure of a carbon fibre based FML. Procedia Structural Integrity, 2020, 26, 120-128.	0.8	7
26	Fatigue crack propagation mechanisms in C70250 and CuCrZr copper alloys. Procedia Structural Integrity, 2020, 26, 330-335.	0.8	5
27	Assessment of fatigue damage in a fully pearlitic ductile cast iron by evaluation of Acoustic Emission Entropy. Procedia Structural Integrity, 2020, 25, 364-369.	0.8	2
28	Analysis of acoustic emission entropy for damage assessment of pearlitic ductile cast irons. Material Design and Processing Communications, 2020, 2, e158.	0.9	2
29	Damage evolution during tensile test of austempered ductile iron partially austenized. Material Design and Processing Communications, 2020, 2, e157.	0.9	2
30	Potentiality of hybrid structures in CFRP and additive manufactured metal octet-truss lattice. Procedia Structural Integrity, 2020, 28, 667-674.	0.8	11
31	An integrated model to predict the microstructure evolution and the mechanical behaviour of a two-phases pseudo-elastic SMA. Procedia Structural Integrity, 2020, 28, 2283-2290.	0.8	2
32	Interlaminar shear strength study on CFRP/Al hybrid laminates with different properties. Frattura Ed Integrita Strutturale, 2020, 14, 442-448.	0.9	6
33	Microstructural damage evaluation of ferritic-ausferritic spheroidal graphite cast iron. Frattura Ed Integrita Strutturale, 2020, 14, 477-485.	0.9	4
34	Ductile cast irons: Microstructure influence on the fatigue initiation mechanisms. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2172-2182.	3.4	23
35	Overload effects on fatigue cracks in a ferritized ductile cast iron. International Journal of Fatigue, 2019, 127, 376-381.	5.7	16
36	Analysis of CFRP/Al hybrid laminates flexural strength. Procedia Structural Integrity, 2019, 18, 368-372.	0.8	2

#	Article	IF	CITATIONS
37	Hydrogen embrittlement in a 2101 lean Duplex Stainless Steel. Procedia Structural Integrity, 2019, 18, 391-398.	0.8	2
38	Influence of structural characteristics on the interlaminar shear strength of CFRP/Al fibre metal laminates. Procedia Structural Integrity, 2019, 18, 373-378.	0.8	11
39	Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Composite Structures, 2019, 225, 111117.	5.8	43
40	Engineering prediction of fatigue strength for AM50 magnesium alloys. International Journal of Fatigue, 2019, 127, 10-15.	5.7	27
41	The influence of hot dip galvanizing process on intermetallic phases formation. Material Design and Processing Communications, 2019, 1, e39.	0.9	4
42	Fatigue crack propagation and damaging micromechanisms in Ductile Cast Irons. International Journal of Fatigue, 2019, 124, 48-54.	5.7	22
43	Flexural strength of aluminium carbon/epoxy fibre metal laminates. Material Design and Processing Communications, 2019, 1, e40.	0.9	4
44	Experimental analysis of aluminium/carbon epoxy hybrid laminates under flexural load. Frattura Ed Integrita Strutturale, 2019, 13, 739-747.	0.9	19
45	Fatigue analysis of a near-equiatomic pseudo-elastic NiTi SMA. Theoretical and Applied Fracture Mechanics, 2018, 94, 110-119.	4.7	16
46	Integranular corrosion susceptibility analysis in austenoâ€ferritic (duplex) stainless steels. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 739-748.	3.4	1
47	Chemical composition and heat treatment influence on duplex stainless steels fatigue crack propagation resistance. Strength, Fracture and Complexity, 2018, 11, 253-263.	0.3	1
48	Pearlitic Ductile Cast Iron: mechanical properties gradient analysis in graphite elements. Procedia Structural Integrity, 2018, 9, 9-15.	0.8	8
49	Bending damages in galvanized ductile cast irons. Procedia Structural Integrity, 2018, 9, 265-271.	0.8	3
50	Pearlitic ductile cast iron: fatigue crack paths and damaging micromechanisms. Procedia Structural Integrity, 2018, 13, 192-197.	0.8	2
51	Grain size influence on fatigue behaviour in a CuZnAl PE SMA. Procedia Structural Integrity, 2018, 13, 204-209.	0.8	0
52	Grain size and loading conditions influence on fatigue crack propagation in a Cu-Zn-Al shape memory alloy. International Journal of Fatigue, 2018, 115, 27-34.	5.7	17
53	Mechanical Behaviour and Phase Transition Mechanisms of a Shape Memory Alloy by Means of a Novel Analytical Model. Acta Mechanica Et Automatica, 2018, 12, 105-108.	0.6	7
54	A simple model to calculate the microstructure evolution in a NiTi SMA. Frattura Ed Integrita Strutturale, 2018, 12, 173-182.	0.9	8

#	Article	IF	CITATIONS
55	Fatigue crack propagation in Ductile Cast Irons: an Artificial Neural Networks based model. Procedia Structural Integrity, 2017, 3, 291-298.	0.8	4
56	High temperature embrittled duplex stainless steels: influence of the chemical composition on the fatigue crack propagation. Procedia Structural Integrity, 2017, 3, 308-315.	0.8	6
57	Analysis of the intergranular corrosion susceptibility in stainless steel by means of potentiostatic reactivation tests. Procedia Structural Integrity, 2017, 3, 269-275.	0.8	7
58	Classification of ductile cast iron specimens based on image analysis and support vector machine. Procedia Structural Integrity, 2017, 3, 283-290.	0.8	11
59	Novel zinc-based alloys used to improve the corrosion protection of metallic substrates. Engineering Failure Analysis, 2017, 82, 327-339.	4.0	10
60	Duplex stainless steels "475°C embrittlement― influence of the chemical composition on the fatigue crack propagation. Procedia Structural Integrity, 2017, 3, 299-307.	0.8	6
61	Damaging micromechanisms in an as cast ferritic and a ferritized ductile cast iron. Procedia Structural Integrity, 2017, 3, 201-207.	0.8	16
62	Sn and Ti influence on damage of bent hot-dip galvanizing phases. Procedia Structural Integrity, 2017, 3, 224-230.	0.8	3
63	Crack path and damage in a CuZnAl SMA. Procedia Structural Integrity, 2017, 3, 217-223.	0.8	3
64	Special Issue on â€~Modern Imaging Techniques in Fracture and Damage Analyses': Selected papers from the 21st European Conference of Fracture (ECF 21), held in Catania, Sicily, Italy, on 20–24 June 2016. Engineering Fracture Mechanics, 2017, 183, iii-iv.	4.3	0
65	Damage micromechanisms in a hot dip galvanized steel. Procedia Structural Integrity, 2017, 3, 231-236.	0.8	11
66	Ductile cast irons: Microstructure influence on the damaging micromechanisms in overloaded fatigue cracks. Engineering Failure Analysis, 2017, 82, 340-349.	4.0	20
67	Classification of ductile cast iron specimens: a machine learning approach. Frattura Ed Integrita Strutturale, 2017, 11, 231-238.	0.9	3
68	Fatigue crack propagation and overload damaging micromechanisms in a ferritic–pearlitic ductile cast iron. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 999-1011.	3.4	19
69	Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron. Engineering Fracture Mechanics, 2016, 167, 248-258.	4.3	33
70	Fatigue microstructural evolution in pseudo elastic NiTi alloy. Procedia Structural Integrity, 2016, 2, 1457-1464.	0.8	6
71	Improved Zn-based coatings for ipersandelin steel products. Procedia Structural Integrity, 2016, 2, 2263-2268.	0.8	0

Ductile Irons: Ferriticâ€"Pearlitic. , 2016, , 1126-1131.

#	Article	IF	CITATIONS
73	Overload effects on fatigue cracks in ferritic-pearlitic ductile cast irons. Procedia Structural Integrity, 2016, 2, 3369-3376.	0.8	5
74	Kinetics of Intermetallic Phases and Mechanical Behavior of ZnSn3% Hotâ€Dip Galvanization Coatings. Advanced Engineering Materials, 2016, 18, 2088-2094.	3.5	11
75	Degenerated graphite nodules influence on fatigue crack paths in a ferritic ductile cast iron. Frattura Ed Integrita Strutturale, 2016, , .	0.9	Ο
76	Fatigue crack micromechanisms in a Cu-Zn-Al shape memory alloy with pseudo-elastic behavior. Frattura Ed Integrita Strutturale, 2016, , .	0.9	0
77	Graphite Nodules Influence on DCIs Mechanical Properties: experimental and Numerical Investigation. Procedia Engineering, 2015, 109, 135-143.	1.2	12
78	Fatigue Crack Propagation in a Ferritic-pearlitic DCI: Overload Effects on Damaging Mechanisms. Procedia Engineering, 2015, 109, 35-42.	1.2	4
79	Fatigue crack tip damaging micromechanisms in pearlitic ductile cast irons. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 238-245.	3.4	19
80	Mechanical and Structural Characterization of Zn-Ti Colored Coatings. Procedia Engineering, 2015, 109, 105-112.	1.2	9
81	Pearlitic Ductile Cast Irons: Fatigue Initiation Micromechanisms. Procedia Engineering, 2015, 109, 465-472.	1.2	2
82	Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron. Frattura Ed Integrita Strutturale, 2015, 9, 111-119.	0.9	5
83	Fatigue crack behavior on a Cu-Zn-Al SMA. Frattura Ed Integrita Strutturale, 2014, 8, 454-461.	0.9	14
84	Damaging micromechanisms characterization in a ferritic-pearlitic ductile cast iron. Frattura Ed Integrita Strutturale, 2014, 8, 62-67.	0.9	6
85	Stress triaxiality influence on damaging micromechanisms in a pearlitic ductile cast iron. Frattura Ed Integrita Strutturale, 2014, 8, 462-468.	0.9	7
86	Macro and microscopical approach to the damaging micromechanisms analysis in a ferritic ductile cast iron. Theoretical and Applied Fracture Mechanics, 2014, 69, 26-33.	4.7	48
87	Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy. International Journal of Fatigue, 2014, 58, 136-143.	5.7	29
88	Damaging Micromechanisms Characterization in Pearlitic Ductile Cast Irons. , 2014, 3, 295-300.		13
89	Damaging micromechanisms in hot-dip galvanizing Zn based coatings. Theoretical and Applied Fracture Mechanics, 2014, 70, 91-98.	4.7	35
90	Graphite nodules and fatigue crack propagation micromechanisms in a ferritic ductile cast iron. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 893-902.	3.4	39

#	Article	IF	CITATIONS
91	Graphite nodules features identifications and damaging micromechanims in ductile irons. Frattura Ed Integrita Strutturale, 2013, 7, 12-21.	0.9	5
92	Pearlitic ductile cast iron: damaging micromechanisms at crack tip. Frattura Ed Integrita Strutturale, 2013, 7, 102-108.	0.9	21
93	Sn and Ti influences on intermetallic phases damage in hot dip galvanizing. Frattura Ed Integrita Strutturale, 2012, 6, 31-38.	0.9	11
94	Damaging micromechanisms characterization of a ferritic ductile cast iron. Engineering Fracture Mechanics, 2010, 77, 2016-2023.	4.3	76
95	Influence of dipping time on cracking during bending of hot dip galvanized coatings with Sn and Ti contents. Frattura Ed Integrita Strutturale, 2010, 4, 52-63.	0.9	5
96	Ductile cast irons: microstructure influence on fatigue crack propagation resistance. Frattura Ed Integrita Strutturale, 2010, 4, 3-16.	0.9	14
97	Damaging micromechanisms in ferritic–pearlitic ductile cast irons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 181-186.	5.6	72
98	22 Cr 5 Ni duplex and 25 Cr 7 Ni superduplex stainless steel: Hydrogen influence on fatigue crack propagation resistance. Engineering Fracture Mechanics, 2008, 75, 705-714.	4.3	7
99	Sintered stainless steels: Fatigue crack propagation resistance under hydrogen charging conditions. Corrosion Science, 2007, 49, 2099-2117.	6.6	7
100	Performance index of isogrid structures: robotic filament winding carbon fiber reinforced polymer vs. titanium alloy. Materials and Manufacturing Processes, 0, , 1-9.	4.7	2