Jinying Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193888/publications.pdf Version: 2024-02-01

Ιιννίης Υμαν

#	Article	IF	CITATIONS
1	Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. Journal of the American Chemical Society, 2010, 132, 9268-9270.	6.6	496
2	Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 2014, 5, 1519-1528.	1.9	483
3	Highly Efficient Selfâ€Healable and Dual Responsive Celluloseâ€Based Hydrogels for Controlled Release and 3D Cell Culture. Advanced Functional Materials, 2017, 27, 1703174.	7.8	325
4	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Advanced Functional Materials, 2017, 27, 1603623.	7.8	312
5	Schiff's base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry, 2012, 3, 3045.	1.9	302
6	CO ₂ â€Responsive Polymeric Vesicles that Breathe. Angewandte Chemie - International Edition, 2011, 50, 4923-4927.	7.2	277
7	CO ₂ â€Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. Angewandte Chemie - International Edition, 2015, 54, 8934-8938.	7.2	276
8	Synthesis of Cellulose- <i>graft</i> -Poly(<i>N</i> , <i>N</i> -dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules, 2008, 9, 2615-2620.	2.6	191
9	Breathing Polymersomes: CO ₂ â€Tuning Membrane Permeability for Sizeâ€5elective Release, Separation, and Reaction. Angewandte Chemie - International Edition, 2013, 52, 5070-5073.	7.2	188
10	Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer, 2009, 50, 447-454.	1.8	171
11	Core–shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. Journal of Materials Chemistry, 2011, 21, 2823-2840.	6.7	137
12	Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chemical Communications, 2011, 47, 9594.	2.2	127
13	β-Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption. Journal of Materials Chemistry, 2011, 21, 3704.	6.7	127
14	CO ₂ -Responsive Cellulose Nanofibers Aerogels for Switchable Oil–Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 9367-9373.	4.0	123
15	Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex. Angewandte Chemie - International Edition, 2017, 56, 16541-16545.	7.2	120
16	Smart Nanocontainers: Progress on Novel Stimuliâ€Responsive Polymer Vesicles. Macromolecular Rapid Communications, 2014, 35, 767-779.	2.0	114
17	Ferrocene-based supramolecular structures and their applications in electrochemical responsive systems. Chemical Communications, 2014, 50, 13005-13014.	2.2	111
18	A CO ₂ - and temperature-switchable "schizophrenic―block copolymer: from vesicles to micelles. Chemical Communications, 2014, 50, 8958.	2.2	106

#	Article	IF	CITATIONS
19	Polymer Assemblies with Nanostructure-Correlated Aggregation-Induced Emission. Macromolecules, 2017, 50, 1126-1133.	2.2	106
20	Morphology Evolution of Polymeric Assemblies Regulated with Fluoro-Containing Mesogen in Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 8192-8201.	2.2	100
21	Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host–Guest Interaction as Stimuli Responsive Linker. Molecular Pharmaceutics, 2017, 14, 2475-2486.	2.3	98
22	Organelle‧pecific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angewandte Chemie - International Edition, 2021, 60, 8923-8931.	7.2	97
23	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6, 607-612.	1.9	91
24	Tailoring the Multicompartment Nanostructures of Fluoro-Containing ABC Triblock Terpolymer Assemblies via Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 8212-8220.	2.2	91
25	Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Materials Letters, 2008, 62, 1372-1375.	1.3	88
26	Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polymer Chemistry, 2015, 6, 3652-3659.	1.9	87
27	Redox-switchable supramolecular polymers for responsive self-healing nanofibers in water. Polymer Chemistry, 2013, 4, 1216-1220.	1.9	84
28	Entangled Azobenzeneâ€Containing Polymers with Photoinduced Reversible Solidâ€toâ€Liquid Transitions for Healable and Reprocessable Photoactuators. Advanced Functional Materials, 2020, 30, 1906752.	7.8	82
29	Voltage-responsive micelles based on the assembly of two biocompatible homopolymers. Polymer Chemistry, 2014, 5, 1751-1759.	1.9	80
30	Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-Containing Block Copolymer Assemblies Prepared by Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 3308-3314.	2.2	78
31	Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer. Chemical Communications, 2010, 46, 2781.	2.2	76
32	Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydrate Polymers, 2020, 237, 116133.	5.1	74
33	Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29203-29207.	4.0	67
34	Linear arrangements of polypyrrole microcontainers. Chemical Communications, 2004, , 994.	2.2	59
35	Synthesis, characterization, and fluorescence of pyreneâ€containing eightâ€arm starâ€shaped dendrimerâ€like copolymer with pentaerythritol core. Journal of Polymer Science Part A, 2008, 46, 2788-2798.	2.5	58
36	Copolymer logical switches adjusted through core–shell micelles: from temperature response to fluorescence response. Chemical Communications, 2008, , 6188.	2.2	57

#	Article	IF	CITATIONS
37	Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 9750-9759.	2.2	53
38	Semiâ€Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1700840.	2.0	51
39	Visible light-responsive micelles formed from dialkoxyanthracene-containing block copolymers. Chemical Communications, 2012, 48, 1913.	2.2	50
40	Electrospinning of Celluloseâ€Based Fibers From NaOH/Urea Aqueous System. Macromolecular Materials and Engineering, 2010, 295, 695-700.	1.7	49
41	Hybrid nanoparticles with CO ₂ -responsive shells and fluorescence-labelled magnetic cores. Journal of Materials Chemistry B, 2014, 2, 437-442.	2.9	46
42	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. Polymer Chemistry, 2015, 6, 2133-2138.	1.9	43
43	Non-thermally initiated RAFT polymerization-induced self-assembly. Polymer Chemistry, 2021, 12, 3220-3232.	1.9	42
44	Fabrication of thermo-responsive hydrogels from star-shaped copolymer with a biocompatible β-cyclodextrin core. Polymer, 2012, 53, 3719-3725.	1.8	40
45	CO2-switchable drug release from magneto-polymeric nanohybrids. Polymer Chemistry, 2015, 6, 2319-2326.	1.9	40
46	Schiff base interaction tuned mesoporous organosilica nanoplatforms with pH-responsive degradability for efficient anti-cancer drug delivery <i>in vivo</i> . Chemical Communications, 2018, 54, 9190-9193.	2.2	40
47	Topological engineering of amphiphilic copolymers <i>via</i> RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate for polymeric assemblies with tunable nanostructures. Polymer Chemistry, 2018, 9, 912-919.	1.9	39
48	An Adaptable Cryptosystem Enabled by Synergies of Luminogens with Aggregationâ€Inducedâ€Emission Character. Advanced Materials, 2020, 32, e2004616.	11.1	39
49	Synthesis, characterization, and thermal properties of dendrimer-star, block-comb copolymers by ring-opening polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 6575-6586.	2.5	38
50	Synthesis of pH†and temperatureâ€responsive chitosanâ€ <i>graft</i> â€poly[2â€(<i>N</i> , <i>N</i> â€dimethylamino) ethyl methacrylate] copolymer and gold nanoparticle stabilization by its micelles. Polymer International, 2011, 60, 194-201.	1.6	38
51	Nonspherical Liquid Crystalline Assemblies with Programmable Shape Transformation. ACS Macro Letters, 2018, 7, 956-961.	2.3	38
52	Multidimensional Information Encryption and Storage: When the Input Is Light. Research, 2021, 2021, 7897849.	2.8	38
53	Fabrication of gold nanocrystal-coated polypyrrole nanotubules. Journal of Materials Chemistry, 2005, 15, 859.	6.7	33
54	Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications. Polymer Chemistry, 2017, 8, 4805-4810.	1.9	33

#	Article	IF	CITATIONS
55	Synthesis of AB _n -type colloidal molecules by polymerization-induced particle-assembly (PIPA). Chemical Science, 2020, 11, 2855-2860.	3.7	32
56	Celluloseâ€based hydrogels regulated by supramolecular chemistry. SusMat, 2021, 1, 266-284.	7.8	31
57	Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. ACS Applied Materials & Interfaces, 2020, 12, 16104-16113.	4.0	30
58	Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 7987-7996.	4.0	30
59	Dynamic supramacromolecular self-assembly: deformable polymer fabricated nanostructures through a host-controlled approach. Polymer Chemistry, 2010, 1, 423-425.	1.9	28
60	Magnetic nanoparticles for the affinity adsorption of maltose binding protein (MBP) fusion enzymes. Journal of Materials Chemistry, 2012, 22, 6813.	6.7	27
61	Tailoring the droplet size of Pickering emulsions by PISA synthesized polymeric nanoparticles. Polymer, 2020, 206, 122853.	1.8	25
62	CO2-breathing and piercing polymersomes as tunable and reversible nanocarriers. Scientific Reports, 2016, 6, 23624.	1.6	24
63	Star amphiphilic supramolecular copolymer based on host–guest interaction for electrochemical controlled drug delivery. Polymer, 2016, 88, 112-122.	1.8	24
64	Biginelli reaction on cellulose acetoacetate: a new approach for versatile cellulose derivatives. Carbohydrate Polymers, 2019, 209, 223-229.	5.1	23
65	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances, 2015, 5, 89472-89477.	1.7	22
66	CO ₂ -Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polymer Chemistry, 2017, 8, 2833-2840.	1.9	22
67	Enamine Approach for Versatile and Reversible Functionalization on Cellulose Related Porous Sponges. ACS Sustainable Chemistry and Engineering, 2018, 6, 9028-9036.	3.2	22
68	Synthesis and direct assembly of linear–dendritic copolymers <i>via</i> CuAAC click polymerization-induced self-assembly (CPISA). Polymer Chemistry, 2020, 11, 936-943.	1.9	21
69	Electrospun Sandwich‣tructure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. Macromolecular Materials and Engineering, 2018, 303, 1700270.	1.7	20
70	Polymerization-induced self-assembly of liquid crystalline ABC triblock copolymers with long solvophilic chains. Polymer Chemistry, 2018, 9, 3944-3951.	1.9	20
71	Organelle‧pecific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angewandte Chemie, 2021, 133, 9005-9013.	1.6	20
72	Synthesis, characterization, andin vitro degradation of star-shaped P(É›-caprolactone)-b-poly(L-lactide)-b-poly(D,L-lactide-co-glycolide) from hexakis [p-(hydroxymethyl)phenoxy]cyclotriphosphazene initiator. Journal of Applied Polymer Science, 2007, 104, 2310-2317.	1.3	18

#	Article	IF	CITATIONS
73	Direct affinity immobilization of recombinant heparinase I fused to maltose binding protein on maltose-coated magnetic nanoparticles. Biochemical Engineering Journal, 2014, 90, 170-177.	1.8	18
74	CO ₂ â€Breathing Polymer Assemblies via Oneâ€Pot Sequential RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800291.	2.0	18
75	Overcoming Kinetic Trapping for Morphology Evolution during Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2019, 40, e1900202.	2.0	18
76	Direct electrochemical generation of conducting polymer microcontainers on silicon substrate. Polymer International, 2004, 53, 2125-2129.	1.6	17
77	Recent advances in electrospinning supramolecular systems. Journal of Materials Chemistry B, 2021, 10, 8-19.	2.9	17
78	Synthesis and self-assembly of CO ₂ -responsive dendronized triblock copolymers. Polymer Chemistry, 2015, 6, 7427-7435.	1.9	16
79	Electrochemically-responsive magnetic nanoparticles for reversible protein adsorption. Journal of Materials Chemistry B, 2016, 4, 4009-4016.	2.9	16
80	Advances in enzyme-catalysis-mediated RAFT polymerization. Cell Reports Physical Science, 2021, 2, 100487.	2.8	16
81	Electrochemical Redox Switchable Dispersion of Single-Walled Carbon Nanotubes in Water. ACS Applied Materials & Interfaces, 2016, 8, 11024-11030.	4.0	15
82	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Advances, 2015, 5, 65884-65889.	1.7	14
83	A polymerizable aggregation-induced emission dye for fluorescent nanoparticles: synthesis, molecular structure and application in cell imaging. Polymer Chemistry, 2019, 10, 2162-2169.	1.9	14
84	An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2020, 10, 5704-5711.	1.7	13
85	Stimuliâ€Responsive Pickering Emulsions Regulated via Polymerizationâ€Induced Selfâ€Assembly Nanoparticles. Macromolecular Rapid Communications, 2022, 43, e2200010.	2.0	13
86	Multifunctional hybrid magnetite nanoparticles with pHâ€responsivity, superparamagnetism and fluorescence. Polymer International, 2011, 60, 1303-1308.	1.6	12
87	βâ€cyclodextrinâ€based polymeric nanoâ€receptor: the selfâ€assembly of cyclodextrinâ€appended combâ€copolymer. Polymers for Advanced Technologies, 2012, 23, 255-261.	1.6	12
88	Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex. Angewandte Chemie, 2017, 129, 16768-16772.	1.6	12
89	Enzymatic graft polymerization from cellulose acetoacetate: a versatile strategy for cellulose functionalization. Cellulose, 2021, 28, 691-701.	2.4	12
90	Effect of Solvophilic Chain Length in <scp>PISA</scp> Particles on Pickering Emulsion ^{â€} . Chinese Journal of Chemistry, 2021, 39, 3448-3454.	2.6	12

#	Article	IF	CITATIONS
91	A polymerizable Aggregation Induced Emission (AIE)-active dye with remarkable pH fluorescence switching based on benzothiazole and its application in biological imaging. Dyes and Pigments, 2021, 196, 109793.	2.0	12
92	Stimuliâ€ <scp>R</scp> esponsive Polymer Networks with βâ€ <scp>C</scp> yclodextrin and Ferrocene Reversible Linkage Based on Linker Chemistry. Macromolecular Symposia, 2013, 329, 66-69.	0.4	11
93	Study of structure–performance relationships of polymeric dispersants on particle dispersion and stabilisation. RSC Advances, 2017, 7, 2513-2519.	1.7	11
94	Amphiphilic fluorescent copolymers via one-pot synthesis of RAFT polymerization and multicomponent Biginelli reaction and their cells imaging applications. Journal of Materials Research, 2019, 34, 3011-3019.	1.2	11
95	"Solid Emulsionâ€: Gasâ€Switchable Latex System with Reversible Coagulability and Redispersibility. Advanced Sustainable Systems, 2017, 1, 1700051.	2.7	10
96	Synthesis and characterization of thermo-sensitive magnetite-Au nanocomposites. Materials Letters, 2012, 78, 166-169.	1.3	9
97	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polymer Bulletin, 2017, 74, 4525-4536.	1.7	9
98	Ultrastable Near-Infrared Aggregation-Induced Emission Nanoparticles as a Fluorescent Probe: Long-Term Tumor Monitoring and Lipid Droplet Tracking. CCS Chemistry, 2021, 3, 1569-1606.	4.6	9
99	Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Organic and Biomolecular Chemistry, 2022, 20, 749-767.	1.5	9
100	Optically Active Polymer Via Oneâ€Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. Macromolecular Chemistry and Physics, 2015, 216, 1483-1489.	1.1	8
101	Breathing catalyst-supports: CO ₂ adjustable and magnetic recyclable "smart―hybrid nanoparticles. RSC Advances, 2016, 6, 97030-97035.	1.7	8
102	Synthesis of Airâ€Stable Cyclopentadienyl Fe(CO) ₂ (Fp) Polymers by a Host–Guest Interaction of Cyclodextrin with Airâ€Sensitive Fp Pendant Groups. Angewandte Chemie - International Edition, 2017, 56, 6246-6250.	7.2	8
103	A novel AIE-active dye for fluorescent nanoparticles by one-pot combination of Hantzsch reaction and RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2019, 9, 32601-32607.	1.7	8
104	Formation and Photoluminescence of Fluorescent Polymers. International Journal of Polymer Science, 2010, 2010, 1-2.	1.2	7
105	CO2-responsive bowl-shaped polymersomes. Macromolecular Research, 2017, 25, 635-639.	1.0	7
106	Amphiphilic AIE-active copolymers with optical activity by chemoenzymatic transesterification and RAFT polymerization: Synthesis, self-assembly and biological imaging. Dyes and Pigments, 2021, 184, 108829.	2.0	7
107	In Situ Visualization of Reversible Diels–Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces, 2022, 14, 3485-3495.	4.0	7
108	<i>In situ</i> observation of heterogeneous catalytic organic reactions <i>via</i> aggregation-induced emission luminogens. Chemical Communications, 2022, 58, 1601-1604.	2.2	6

#	Article	IF	CITATIONS
109	<i>In situ</i> generation and evolution of polymer toroids by liquid crystallization-assisted seeded dispersion polymerization. Chemical Communications, 2022, 58, 6922-6925.	2.2	6
110	Cylindrical PCL brushes on the surface of lanthanum hydroxide nanowires by ring-opening polymerization. Science Bulletin, 2010, 55, 1376-1381.	1.7	5
111	Excitation wavelength as additional dimension in cross-reactive sensor arrays. Sensors and Actuators B: Chemical, 2021, 344, 130183.	4.0	5
112	Host–guest complexation modulated aqueous polymerization-induced self-assembly for monodisperse hierarchical nanoflowers. Chemical Communications, 2021, 57, 13720-13723.	2.2	5
113	Chainâ€Conformationâ€Directed Polymerization Cyclization for Effective Synthesis of Macrocycles in Bulk. Chemistry - A European Journal, 2018, 24, 15380-15386.	1.7	4
114	Multifunctional Fluorescent Magnetic Nanoparticles: Synthesis, Characterization and Targeted Cell Imaging Applications. Chinese Journal of Chemistry, 2017, 35, 977-983.	2.6	3
115	Renewable boronic acid affiliated glycerol nano-adsorbents for recycling enzymatic catalyst in biodiesel fuel production. Chemical Communications, 2018, 54, 12475-12478.	2.2	3
116	Customizable nano-sized colloidal tetrahedra by polymerization-induced particle self-assembly (PIPA). Polymer Chemistry, 2022, 13, 3529-3538.	1.9	2
117	Synthesis of Airâ€Stable Cyclopentadienyl Fe(CO) ₂ (Fp) Polymers by a Host–Guest Interaction of Cyclodextrin with Airâ€Sensitive Fp Pendant Groups. Angewandte Chemie, 2017, 129, 6342-6346.	1.6	1
118	Gasâ€Responsive Selfâ€Assemblies for Mimicking the Alveoli. Macromolecular Rapid Communications, 2021, 42, 2100019.	2.0	1