List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced electrochemical performance of electrosynthesized fibrillar polypyrrole film. Materials Letters, 2022, 308, 131295.	1.3	5
2	Tuning of hydrophobicity of conducting films cast from polyaniline-phytic acid-poly(N-vinylpyrrolidone) dispersions. Progress in Organic Coatings, 2022, 163, 106666.	1.9	1
3	Optimization of oxidant for polymerization of indole in water-ethanol medium. Polymer, 2022, 239, 124447.	1.8	8
4	Macroporous nitrogen-containing carbon for electrochemical capacitors. Electrochimica Acta, 2022, 418, 140370.	2.6	2
5	Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. Journal of Hazardous Materials, 2022, 435, 129004.	6.5	62
6	Poly(3,4â€ethylenedioxythiophene):Poly(styrene sulfonate) in antibacterial, tissue engineering and biosensors applications: Progress, challenges and perspectives. Journal of Applied Polymer Science, 2022, 139, .	1.3	16
7	Nanostructured poly(N-methyl pyrrole) with enhanced conductivity and capacitance. Synthetic Metals, 2022, 290, 117134.	2.1	1
8	The evolution of the molecular structure of polypyrrole during chemical polymerization. Synthetic Metals, 2021, 271, 116608.	2.1	22
9	Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. International Journal of Molecular Sciences, 2021, 22, 501.	1.8	8
10	Sponge-like polypyrrole–nanofibrillated cellulose aerogels: synthesis and application. Journal of Materials Chemistry C, 2021, 9, 12615-12623.	2.7	14
11	Nitrogen-containing carbon enriched with tungsten atoms prepared by carbonization of polyaniline. Chemical Papers, 2021, 75, 5153-5161.	1.0	6
12	Enhancement of conductivity, mechanical and biological properties of polyaniline-poly(N-vinylpyrrolidone) cryogels by phytic acid. Polymer, 2021, 217, 123450.	1.8	9
13	Progress in research and applications of conducting polymers: topical issue. Chemical Papers, 2021, 75, 4979-4980.	1.0	2
14	Synthesis and Impedance Spectroscopy of Poly(p-phenylenediamine)/Montmorillonite Composites. Polymers, 2021, 13, 3132.	2.0	6
15	Electropolymerized polypyrrole/safranin-O films: Capacitance enhancement. Polymer, 2021, 230, 124099.	1.8	8
16	Tuning the Conductivity, Morphology, and Capacitance with Enhanced Antibacterial Properties of Polypyrrole by Acriflavine Hydrochloride. ACS Applied Polymer Materials, 2021, 3, 6063-6069.	2.0	12
17	Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synthetic Metals, 2020, 260, 116266.	2.1	29
18	Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 2020, 259, 116250.	2.1	11

#	Article	IF	CITATIONS
19	Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. Reactive and Functional Polymers, 2020, 146, 104436.	2.0	14
20	Carbon Materials Derived from Poly(aniline-co-p-phenylenediamine) Cryogels. Polymers, 2020, 12, 11.	2.0	8
21	Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications. Polymer, 2020, 208, 122945.	1.8	22
22	Highly conducting 1-D polypyrrole prepared in the presence of safranin. Journal of Materials Chemistry C, 2020, 8, 12140-12147.	2.7	22
23	Methyl red dye in the tuning of polypyrrole conductivity. Polymer, 2020, 207, 122854.	1.8	16
24	Frozenâ€State Polymerization as a Tool in Conductivity Enhancement of Polypyrrole. Macromolecular Rapid Communications, 2020, 41, e2000364.	2.0	10
25	One-step synthesis of polyaniline–silver cryogels. Journal of Materials Science, 2020, 55, 10427-10434.	1.7	3
26	The First Stages of Chemical and Electrochemical Aniline Oxidation—Spectroscopic Comparative Study. Applied Sciences (Switzerland), 2020, 10, 2091.	1.3	14
27	Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). Colloid and Polymer Science, 2020, 298, 293-301.	1.0	6
28	The biocompatibility of polyaniline and polypyrrole 2 : Doping with organic phosphonates. Materials Science and Engineering C, 2020, 113, 110986.	3.8	18
29	Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer, 2020, 197, 122491.	1.8	26
30	Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. Chemical Papers, 2020, 74, 3183-3193.	1.0	24
31	Carbogels: carbonized conducting polyaniline/poly(vinyl alcohol) aerogels derived from cryogels for electrochemical capacitors. Journal of Materials Chemistry A, 2019, 7, 1785-1796.	5.2	14
32	Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Applied Surface Science, 2019, 492, 497-503.	3.1	15
33	Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous and Mesoporous Materials, 2019, 287, 234-245.	2.2	31
34	Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydrate Polymers, 2019, 219, 423-430.	5.1	23
35	Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer, 2019, 174, 11-17.	1.8	38
36	Tailoring of carbonized polypyrrole nanotubes core by different polypyrrole shells for oxygen reduction reaction selectivity modification. Journal of Colloid and Interface Science, 2019, 551, 184-194.	5.0	27

#	Article	IF	CITATIONS
37	Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synthetic Metals, 2019, 252, 122-126.	2.1	23
38	Exploring the Critical Factors Limiting Polyaniline Biocompatibility. Polymers, 2019, 11, 362.	2.0	30
39	In-Vitro Hemocompatibility of Polyaniline Functionalized by Bioactive Molecules. Polymers, 2019, 11, 1861.	2.0	7
40	Multifunctional polypyrrole@maghemite@silver composites: synthesis, physico-chemical characterization and antibacterial properties. Chemical Papers, 2018, 72, 1789-1797.	1.0	11
41	Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. Materials Chemistry and Physics, 2018, 213, 352-361.	2.0	35
42	Reduction of silver ions to silver with polyaniline/poly(vinyl alcohol) cryogels and aerogels. Chemical Papers, 2018, 72, 1619-1628.	1.0	10
43	Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Scientific Reports, 2018, 8, 135.	1.6	57
44	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synthetic Metals, 2018, 237, 40-49.	2.1	35
45	Oxidation of pyrrole with <i>p</i> -benzoquinone to semiconducting products and their application in electrorheology. New Journal of Chemistry, 2018, 42, 10167-10176.	1.4	9
46	Conducting polymer colloids, hydrogels, and cryogels: common start to various destinations. Colloid and Polymer Science, 2018, 296, 989-994.	1.0	11
47	Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. Chemical Papers, 2018, 72, 1605-1618.	1.0	54
48	Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. International Journal of Polymer Science, 2018, 2018, 1-8.	1.2	33
49	Conducting composite cryogels based on poly(aniline-co-p-phenylenediamine) supported by poly(vinyl) Tj ETQq1	1 0.7843 2.1	14 ₉ rgBT /Ove
50	The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Materials Science and Engineering C, 2018, 91, 303-310.	3.8	96
51	Effect of 1,3-phenylenediamine concentration on the properties of poly(aniline-co-1,3-phenylenediamine) cryogels. Materials Letters, 2018, 229, 68-70.	1.3	7
52	Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer, 2018, 150, 130-137.	1.8	32
53	Polyaniline Cryogels Supported with Poly(vinyl alcohol): Soft and Conducting. Macromolecules, 2017, 50, 972-978.	2.2	58
54	Colloidal dispersions of conducting copolymers of aniline and <i>p</i> -phenylenediamine for films with enhanced conductometric sensitivity to temperature. Journal of Materials Chemistry C, 2017, 5, 1668-1674.	2.7	15

#	Article	IF	CITATIONS
55	Interfaced conducting polymers. Synthetic Metals, 2017, 224, 109-115.	2.1	15
56	Polypyrrole nanotubes: The tuning of morphology and conductivity. Polymer, 2017, 113, 247-258.	1.8	102
57	Explosive hazards in polyaniline chemistry. Chemical Papers, 2017, 71, 387-392.	1.0	1
58	Assessment of the properties of diethyl phosphite as a novel anticorrosion pigment in organic coatings. Chemical Papers, 2017, 71, 423-438.	1.0	0
59	Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids and Surfaces B: Biointerfaces, 2017, 157, 309-316.	2.5	9
60	Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites. Electrochimica Acta, 2017, 246, 443-450.	2.6	19
61	Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. Journal of Materials Chemistry C, 2017, 5, 4236-4245.	2.7	90
62	Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity. Materials Chemistry and Physics, 2017, 194, 206-218.	2.0	54
63	Trends in science and applications of conducting polymers: topical issue. Chemical Papers, 2017, 71, 177-177.	1.0	1
64	Formation of bacterial and fungal biofilm on conducting polyaniline. Chemical Papers, 2017, 71, 505-512.	1.0	4
65	Cytotoxicity of poly(p-phenylenediamine). Chemical Papers, 2017, 71, 367-372.	1.0	1
66	Biological properties of printable polyaniline and polyaniline–silver colloidal dispersions stabilized by gelatin. Synthetic Metals, 2017, 232, 52-59.	2.1	24
67	Structure and properties of polyaniline interacting with H-phosphonates. Synthetic Metals, 2017, 232, 79-86.	2.1	14
68	Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 2017, 396, 169-176.	3.1	133
69	Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response. Sensors, 2016, 16, 498.	2.1	35
70	Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties. Sensors, 2016, 16, 1917.	2.1	44
71	Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline. Carbon, 2016, 109, 836-842.	5.4	13
72	Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Advances, 2016, 6, 88382-88391.	1.7	145

#	Article	IF	CITATIONS
73	Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synthetic Metals, 2016, 221, 67-74.	2.1	32
74	Gravure-printed ammonia sensor based on organic polyaniline colloids. Sensors and Actuators B: Chemical, 2016, 225, 510-516.	4.0	41
75	Polyaniline–maghemite based dispersion: Electrical, magnetic properties and their cytotoxicity. Synthetic Metals, 2016, 214, 23-29.	2.1	18
76	Magnetoconductive maghemite core/polyaniline shell nanoparticles: Physico-chemical and biological assessment. Colloids and Surfaces B: Biointerfaces, 2016, 141, 382-389.	2.5	15
77	Preparation of conducting polysiloxane/polyaniline composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
78	Conducting composites prepared by the reduction of silver ions with poly(<i>p</i> â€phenylenediamine). Polymer International, 2015, 64, 496-504.	1.6	17
79	Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Advances, 2015, 5, 50328-50335.	1.7	30
80	Blood coagulation and platelet adhesion on polyaniline films. Colloids and Surfaces B: Biointerfaces, 2015, 133, 278-285.	2.5	19
81	The composites of silver with globular or nanotubular polypyrrole: The control of silver content. Synthetic Metals, 2015, 209, 105-111.	2.1	27
82	Conducting materials prepared by the oxidation of p-phenylenediamine with p-benzoquinone. Journal of Solid State Electrochemistry, 2015, 19, 2653-2664.	1.2	13
83	The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Applied Surface Science, 2015, 356, 737-741.	3.1	47
84	Towards conducting inks: Polypyrrole–silver colloids. Electrochimica Acta, 2014, 122, 296-302.	2.6	29
85	In-situ prepared polyaniline–silver composites: Single- and two-step strategies. Electrochimica Acta, 2014, 122, 259-266.	2.6	32
86	Polypyrrole nanotubes: mechanism of formation. RSC Advances, 2014, 4, 1551-1558.	1.7	134
87	Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties. Biomacromolecules, 2014, 15, 3655-3663.	2.6	106
88	The oxidation of aniline with p-benzoquinone and its impact on the preparation of the conducting polymer, polyaniline. Synthetic Metals, 2014, 192, 66-73.	2.1	36
89	Charge transport and dielectric relaxation processes in aniline-based oligomers. Synthetic Metals, 2014, 192, 37-42.	2.1	11
90	Characterization of Polyaniline-Based Ammonia Gas Sensors Prepared by Means of Spray Coating and Ink-Jet Printing. Sensor Letters, 2014, 12, 1620-1627.	0.4	6

#	Article	IF	CITATIONS
91	Enhanced pH stability of conducting polyaniline by reprotonation with perfluorooctanesulfonic acid. Synthetic Metals, 2013, 178, 52-55.	2.1	26
92	Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix. Chemical Papers, 2013, 67, .	1.0	8
93	Electrorheology of aniline-oligomer suspensions under oscillatory shear. Journal of Physics: Conference Series, 2013, 412, 012007.	0.3	2
94	Electrorheology of aniline oligomers. Colloid and Polymer Science, 2013, 291, 2079-2086.	1.0	49
95	Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polymer Chemistry, 2013, 4, 3610.	1.9	53
96	Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chemical Papers, 2013, 67, .	1.0	12
97	Polyaniline–silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 2011, 52, 5947-5952.	1.8	53
98	The preparation of conducting polyaniline–silver and poly(p-phenylenediamine)–silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 2011, 15, 2361-2368.	1.2	20
99	The oxidative polymerization of <i>p</i> â€phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A, 2011, 49, 3387-3403.	2.5	35
100	Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 2011, 56, 3580-3585.	2.6	54
101	Polyaniline-coated silver nanowires. Reactive and Functional Polymers, 2010, 70, 656-662.	2.0	29
102	Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 2010, 59, 437-446.	1.6	52
103	Oxidation of Aniline with Silver Nitrate Accelerated byp-Phenylenediamine: A New Route to Conducting Composites. Macromolecules, 2010, 43, 10406-10413.	2.2	53
104	Conducting polyaniline–montmorillonite composites. Synthetic Metals, 2010, 160, 2596-2604.	2.1	33
105	Application of Ink-Jet Printing and Spray Coating for the Fabrication of Polyaniline/Poly(N-Vinylpyrrolidone)-Based Ammonia Gas Sensor. Key Engineering Materials, 0, 644, 61-64	0.4	3