
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193753/publications.pdf Version: 2024-02-01

DENCLU

#	Article	IF	CITATIONS
1	Effect of electric field on Ce doped TiO2: Lattice phase transition, Pd valence distribution and enhancement of methane oxidation activity. Fuel, 2022, 311, 122518.	6.4	11
2	The effect of preheating temperature on PAH/soot formation in methane/air co-flow flames at elevated pressure. Fuel, 2022, 313, 122656.	6.4	8
3	Combustion and emission characteristics of natural gas engine with partial-catalytic oxidation of the fuel. Fuel, 2022, 312, 122796.	6.4	9
4	A comparative study on PAH characteristics of ethanol and ammonia as fuel additives in a premixed flame. Journal of the Energy Institute, 2022, 101, 56-66.	5.3	11
5	Cuâ€Promoted Pt/Ce 0.5 Zr 0.5 O x Catalyst for Ammonia Production Reaction of Passive SCR from Nitric Oxide and Hydrogen. ChemistrySelect, 2022, 7, .	1.5	0
6	Low temperature oxidation of toluene in an n-heptane/toluene mixture. Combustion and Flame, 2022, 242, 112200.	5.2	3
7	Incipient sooting tendency of oxygenated fuels doped in ethylene counterflow diffusion flames. Combustion and Flame, 2022, 244, 112284.	5.2	2
8	Low Temperature Oxidation of Benzene Over Pd/Co3O4 Catalysts in the Electric Field. Catalysis Letters, 2021, 151, 67-77.	2.6	2
9	Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames. Fuel Processing Technology, 2021, 214, 106682.	7.2	37
10	Experimental and theoretical evidence for the temperature-determined evolution of PAH functional groups. Proceedings of the Combustion Institute, 2021, 38, 1467-1475.	3.9	9
11	Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. Journal of Hazardous Materials, 2021, 407, 124349.	12.4	34
12	Numerical investigation on the optimized arrangement for high-temperature corrosion after low NOx transformation. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2183-2197.	3.6	5
13	Rapid soot inception via α-alkynyl substitution of polycyclic aromatic hydrocarbons. Fuel, 2021, 295, 120580.	6.4	29
14	Growth network of PAH with 5-membered ring: Case study with acenaphthylene molecule. Combustion and Flame, 2021, 230, 111449.	5.2	13
15	In-Situ characterizations to investigate the nature of Co3+ coordination environment to activate surface adsorbed oxygen for methane oxidation. Applied Surface Science, 2021, 556, 149713.	6.1	23
16	Furan formation pathways exploration in low temperature oxidation of 1,3-butadiene, trans-2-butene, and cis-2-butene. Combustion and Flame, 2021, 232, 111519.	5.2	9
17	Chemical effects of anisole and toluene addition to n‑heptane on PAH characteristics in laminar premixed flames by LIF measurement and kinetic model. Fuel, 2021, 303, 121255.	6.4	7
18	Comparative study on properties of Pd-Ce-Zr catalysts synthesized by flame spray pyrolysis and solution combustion: Application for methane catalytic oxidation in electric field. Applied Surface Science, 2021, 566, 150536.	6.1	11

#	Article	IF	CITATIONS
19	Exploring the combustion chemistry of anisole in laminar counterflow diffusion-flames under oxy-fuel conditions. Combustion and Flame, 2021, , 111929.	5.2	6
20	A comparative study on soot particle size distributions in premixed flames of RP-3 jet fuel and its surrogates. Fuel, 2020, 259, 116222.	6.4	17
21	Study on fluorescence spectroscopy of PAHs with different molecular structures using laser-induced fluorescence (LIF) measurement and TD-DFT calculation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117450.	3.9	21
22	Soot formation in laminar flames of ethylene/ammonia. Combustion and Flame, 2020, 220, 210-218.	5.2	63
23	LIF diagnostics for selective and quantitative measurement of PAHs in laminar premixed flames. Combustion and Flame, 2020, 222, 5-17.	5.2	19
24	Effects of ammonia addition on PAH formation in laminar premixed ethylene flames based on laser-induced fluorescence measurement. Energy, 2020, 213, 118868.	8.8	27
25	Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. Journal of Physical Chemistry A, 2020, 124, 3896-3903.	2.5	10
26	Role of dimethyl ether in incipient soot formation in premixed ethylene flames. Combustion and Flame, 2020, 216, 271-279.	5.2	24
27	Study of PAH formation in laminar premixed toluene and C8H10 aromatics flames. Fuel, 2020, 275, 117774.	6.4	13
28	Soot particle size distributions in premixed flames of RP-3 jet fuel and its distillates. Fuel, 2020, 267, 117244.	6.4	6
29	The growth of PAHs and soot in the post-flame region. Proceedings of the Combustion Institute, 2019, 37, 977-984.	3.9	40
30	Investigation on the chemical effects of dimethyl ether and ethanol additions on PAH formation in laminar premixed ethylene flames. Fuel, 2019, 256, 115809.	6.4	30
31	Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures. Combustion and Flame, 2019, 209, 441-451.	5.2	30
32	Theoretical Study of PAH Growth by Phenylacetylene Addition. Journal of Physical Chemistry A, 2019, 123, 10323-10332.	2.5	8
33	Electric field promoted oxidation of naphthalene over Cu/Ce0.55Zr0.45O catalysts at low temperature. Molecular Catalysis, 2019, 476, 110536.	2.0	5
34	Measurement and extrapolation modeling of PAH laser-induced fluorescence spectra at elevated temperatures. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	25
35	Size Distribution of Nascent Soot in Premixed <i>n</i> -Hexane, Cyclohexane, and Methylcyclohexane Flames. Energy & Fuels, 2019, 33, 5740-5748.	5.1	6
36	Investigation on the LIF spectrum superposition of gas-phase PAH mixtures at elevated temperatures: potential for the analysis of PAH LIF spectra in sooting flames. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	12

#	Article	IF	CITATIONS
37	Catalytic Combustion of Lean Methane Assisted by an Electric Field over Mn <i>_x</i> Co <i>_y</i> Catalysts at Low Temperature. Journal of Physical Chemistry C, 2019, 123, 10377-10388.	3.1	29
38	Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combustion and Flame, 2019, 202, 276-291.	5.2	42
39	Electric Field Promoted Complete Oxidation of Benzene over PdCexCoy Catalysts at Low Temperature. Catalysts, 2019, 9, 1071.	3.5	6
40	Synthesis of Bi ₂ O ₃ /g-C ₃ N ₄ for enhanced photocatalytic CO ₂ reduction with a Z-scheme mechanism. RSC Advances, 2019, 9, 37162-37170.	3.6	28
41	The site effect on PAHs formation in HACA-based mass growth process. Combustion and Flame, 2019, 199, 54-68.	5.2	67
42	Experimental and kinetic study of the effects of CO2 and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames. Combustion and Flame, 2018, 192, 439-451.	5.2	45
43	Effect of mixing methane, ethane, propane and ethylene on the soot particle size distribution in a premixed propene flame. Combustion and Flame, 2018, 193, 54-60.	5.2	20
44	Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combustion and Flame, 2018, 197, 463-470.	5.2	34
45	Electric field promoted ultra-lean methane oxidation over Pd-Ce-Zr catalysts at low temperature. Molecular Catalysis, 2018, 459, 78-88.	2.0	34
46	Chemical Mechanism of Exhaust Gas Recirculation on Polycyclic Aromatic Hydrocarbons Formation Based on Laser-Induced Fluorescence Measurement. Energy & Fuels, 2018, 32, 7112-7124.	5.1	39
47	Theoretical Insights into the Mechanism of CO2 Chemisorption and Subsequent CO Desorption on Char Surface with Zigzag Active Sites. Combustion Science and Technology, 2016, 188, 1136-1151.	2.3	4
48	Effect of methane doping on nascent soot formation in ethylene-based laminar premixed flames. Fuel, 2016, 186, 422-429.	6.4	26
49	Mobility size distributions of soot in premixed propene flames. Combustion and Flame, 2016, 172, 365-373.	5.2	32
50	The mechanism and kinetic analysis of C 4 H 4 Â+ÂC 4 H 4 (but-1-ene-3-yne) reaction with features of H-transfer in combustion. International Journal of Hydrogen Energy, 2016, 41, 3249-3258.	7.1	12
51	Particle size distribution of nascent soot in lightly and heavily sooting premixed ethylene flames. Combustion and Flame, 2016, 165, 177-187.	5.2	67
52	Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame. Combustion and Flame, 2015, 162, 3810-3822.	5.2	118
53	The Diagnostics of Laser-Induced Fluorescence (LIF) Spectra of PAHs in Flame with TD-DFT: Special Focus on Five-Membered Ring. Journal of Physical Chemistry A, 2015, 119, 13009-13017.	2.5	46
54	Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management, 2015, 154, 225-258.	7.8	337

#	Article	IF	CITATIONS
55	Experimental study on the two stage injection of diesel and gasoline blends on a common rail injection system. Fuel, 2015, 159, 470-475.	6.4	18
56	Investigating the Role of CH ₂ Radicals in the HACA Mechanism. Journal of Physical Chemistry A, 2015, 119, 3261-3268.	2.5	45
57	New Insights into Thermal Decomposition of Polycyclic Aromatic Hydrocarbon Oxyradicals. Journal of Physical Chemistry A, 2014, 118, 11337-11345.	2.5	25
58	In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides. Chinese Journal of Catalysis, 2014, 35, 294-301.	14.0	53
59	Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 2014, 66, 395-414.	6.0	392
60	Mutation in SUMO E3 ligase, SIZ1, Disrupts the Mature Female Gametophyte in Arabidopsis. PLoS ONE, 2012, 7, e29470.	2.5	28
61	Temperature-programmed oxidation of diesel particulate matter in a hybrid catalysis–plasma reactor. Proceedings of the Combustion Institute, 2007, 31, 3335-3342.	3.9	16
62	Removal of NO x by radical injection. Science Bulletin, 2004, 49, 1991-1995.	1.7	0
63	Removal of NOx from wet flue gas by corona discharge. Fuel, 2004, 83, 1251-1255.	6.4	26
64	Removal of NOx from flue gas with radical oxidation combined with chemical scrubber. Journal of Environmental Sciences, 2004, 16, 462-5.	6.1	1