
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193563/publications.pdf Version: 2024-02-01

ASHOK LANCAM

#	Article	IF	CITATIONS
1	CO2 methanation on Ni-Ce0.8M0.2O2 (M=Zr, Sn or Ti) catalyst: Suppression of CO via formation of bridging carbonyls on nickel. Catalysis Today, 2023, 424, 113053.	4.4	7
2	A review of catalyst modifications for a highly active and stable hydrogen production from methane. International Journal of Hydrogen Energy, 2023, 48, 6204-6232.	7.1	9
3	A review on roles of pretreatment atmospheres for the preparation of efficient Ni-based catalysts. Catalysis Today, 2022, 397-399, 581-591.	4.4	22
4	Recent Advances in Catalyst Technology for Biomass Tar Model Reforming: Thermal, Plasma and Membrane Reactors. Waste and Biomass Valorization, 2022, 13, 1-30.	3.4	21
5	Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma. Catalysts, 2022, 12, 66.	3.5	16
6	Synthesis strategies of carbon nanotube supported and confined catalysts for thermal catalysis. Chemical Engineering Journal, 2022, 431, 133970.	12.7	11
7	Modification strategies of heterogeneous catalysts for water–gas shift reactions. Reaction Chemistry and Engineering, 2022, 7, 551-565.	3.7	9
8	1D confined materials synthesized <i>via</i> a coating method for thermal catalysis and energy storage applications. Journal of Materials Chemistry A, 2022, 10, 6330-6350.	10.3	21
9	State-of-art modifications of heterogeneous catalysts for CO2 methanation – Active sites, surface basicity and oxygen defects. Catalysis Today, 2022, 402, 88-103.	4.4	32
10	Efficient syngas production via CO2 reforming and electroreduction reactions through catalyst design. Energy Conversion and Management, 2022, 265, 115744.	9.2	20
11	Sintering resistant cubic ceria yolk Ni phyllosilicate shell catalyst for methane dry reforming. Catalysis Today, 2022, 402, 319-327.	4.4	8
12	Complete confinement of Ce/Ni within SiO2 nanotube with high oxygen vacancy concentration for CO2 methane reforming. Fuel, 2022, 325, 124819.	6.4	23
13	Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Applied Catalysis B: Environmental, 2021, 282, 119564.	20.2	145
14	Core-Shell Structured Catalysts for Catalytic Conversion of CO2 to Syngas. Nanostructure Science and Technology, 2021, , 121-149.	0.1	2
15	Mesoporous-Silica-Stabilized Cobalt(II) Oxide Nanoclusters for Propane Dehydrogenation. ACS Applied Nano Materials, 2021, 4, 1112-1125.	5.0	40
16	Catalytic reforming of tar model compound over La1-xSrx-Co0.5Ti0.5O3-δ dual perovskite catalysts: Resistance to sulfide and chloride compounds. Applied Catalysis A: General, 2021, 613, 118013.	4.3	22
17	Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts, 2021, 11, 455.	3.5	51
18	Steam reforming of surrogate diesel model over hydrotalcite-derived MO-CaO-Al2O3 (MÂ=ÂNi & Co) catalysts for SOFC applications. Fuel, 2021, 291, 120194.	6.4	22

#	Article	IF	CITATIONS
19	The role of lattice oxygen in CO2 hydrogenation to methanol over La1-xSrxCuO catalysts. Journal of CO2 Utilization, 2021, 47, 101498.	6.8	22
20	Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study. Applied Catalysis B: Environmental, 2021, 290, 119998.	20.2	100
21	Steam reforming of toluene as model compound of biomass tar over Ni–Co/La2O3 nano-catalysts: Synergy of Ni and Co. International Journal of Hydrogen Energy, 2021, 46, 30926-30936.	7.1	30
22	A superb water permeable membrane for potential applications in CO2 to liquid fuel process. Journal of Membrane Science, 2021, 639, 119682.	8.2	8
23	CO ₂ Hydrogenation to Methanol over Partially Reduced Cu-SiO _{2P} Catalysts: The Crucial Role of Hydroxyls for Methanol Selectivity. ACS Applied Energy Materials, 2021, 4, 12149-12162.	5.1	21
24	Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases. Chemical Engineering Research and Design, 2021, 156, 598-616.	5.6	31
25	Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catalysis Today, 2020, 358, 3-29.	4.4	78
26	LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: Effect of calcination temperature. Energy Conversion and Management, 2020, 206, 112475.	9.2	74
27	Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology, 2020, 199, 106252.	7.2	139
28	A review on perovskite catalysts for reforming of methane to hydrogen production. Renewable and Sustainable Energy Reviews, 2020, 134, 110291.	16.4	114
29	A review of recent catalyst advances in CO2 methanation processes. Catalysis Today, 2020, 356, 471-489.	4.4	223
30	Catalytic mixed conducting ceramic membrane reactors for methane conversion. Reaction Chemistry and Engineering, 2020, 5, 1868-1891.	3.7	37
31	Recent advances in process and catalyst for CO2 reforming of methane. Renewable and Sustainable Energy Reviews, 2020, 134, 110312.	16.4	116
32	Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. Reactions, 2020, 1, 162-194.	2.1	41
33	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	38.1	479
34	Zr–Ce-incorporated Ni/SBA-15 catalyst for high-temperature water gas shift reaction: Methane suppression by incorporated Zr and Ce. Journal of Catalysis, 2020, 387, 47-61.	6.2	44
35	Effect of Partial Fe Substitution in La _{0.9} Sr _{0.1} NiO ₃ Perovskite-Derived Catalysts on the Reaction Mechanism of Methane Dry Reforming. ACS Catalysis, 2020, 10, 12466-12486.	11.2	80
36	Highly Efficient NO Decomposition via Dual-Functional Catalytic Perovskite Hollow Fiber Membrane Reactor Coupled with Partial Oxidation of Methane at Medium-Low Temperature. Environmental Science & Technology, 2019, 53, 9937-9946.	10.0	26

#	Article	IF	CITATIONS
37	Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products. , 2019, , 155-210.		6
38	H2S and NOx tolerance capability of CeO2 doped La1â^'xCexCo0.5Ti0.5O3â^'Îr perovskites for steam reforming of biomass tar model reaction. Energy Conversion and Management: X, 2019, 1, 100003.	1.6	13
39	Highly dispersed nickel catalysts <i>via</i> a facile pyrolysis generated protective carbon layer. Chemical Communications, 2019, 55, 6074-6077.	4.1	29
40	Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review. Applied Catalysis B: Environmental, 2019, 250, 250-272.	20.2	133
41	Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem, 2019, 11, 202-224.	3.7	84
42	NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Conversion and Management, 2019, 180, 822-830.	9.2	116
43	Multi-Ni@Ni phyllosilicate hollow sphere for CO ₂ reforming of CH ₄ : influence of Ni precursors on structure, sintering, and carbon resistance. Catalysis Science and Technology, 2018, 8, 1915-1922.	4.1	76
44	Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental, 2018, 230, 220-236.	20.2	370
45	Ni-phyllosilicate structure derived Ni–SiO ₂ –MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. Catalysis Science and Technology, 2018, 8, 1730-1742.	4.1	101
46	Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science and Technology, 2018, 8, 2763-2778.	4.1	129
47	High oxygen permeable and CO2-tolerant SrCoxFe0.9-xNb0.1O3-δ (x = 0.1–0.8) perovskite membranes: Behavior and mechanism. Separation and Purification Technology, 2018, 201, 30-40.	7.9	41
48	Sandwichâ€Like Silica@Ni@Silica Multicore–Shell Catalyst for the Lowâ€Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation. ChemCatChem, 2018, 10, 320-328.	3.7	109
49	Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming. Waste Management, 2018, 82, 249-257.	7.4	44
50	Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers. Fuel, 2018, 222, 185-192.	6.4	74
51	Sintering resistant Ni nanoparticles exclusively confined within SiO ₂ nanotubes for CH ₄ dry reforming. Catalysis Science and Technology, 2018, 8, 3363-3371.	4.1	71
52	Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni CeO2 catalyst: Kinetics and DRIFTS studies. International Journal of Hydrogen Energy, 2018, 43, 15191-15204.	7.1	104
53	Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction. International Journal of Hydrogen Energy, 2018, 43, 15891-15897.	7.1	27
54	High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. Journal of CO2 Utilization, 2018, 27, 238-246.	6.8	122

#	Article	IF	CITATIONS
55	Nickelâ€based Catalysts for Highâ€ŧemperature Water Gas Shift Reactionâ€Methane Suppression. ChemCatChem, 2018, 10, 3927-3942.	3.7	75
56	Low temperature partial oxidation of methane via BaBi 0.05 Co 0.8 Nb 0.15 O 3â^î^ -Ni phyllosilicate catalytic hollow fiber membrane reactor. Chemical Engineering Journal, 2017, 315, 315-323.	12.7	54
57	Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane. Journal of CO2 Utilization, 2017, 18, 345-352.	6.8	178
58	A Review on Bimetallic Nickelâ€Based Catalysts for CO ₂ Reforming of Methane. ChemPhysChem, 2017, 18, 3117-3134.	2.1	395
59	Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catalysis Today, 2017, 281, 250-258.	4.4	130
60	Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. Catalysis Today, 2017, 281, 304-311.	4.4	266
61	Sulfur resistant La _x Ce _{1â^'x} Ni _{0.5} Cu _{0.5} O ₃ catalysts for an ultra-high temperature water gas shift reaction. Catalysis Science and Technology, 2016, 6, 6569-6580.	4.1	29
62	High-temperature water gas shift reaction on Ni–Cu/CeO ₂ catalysts: effect of ceria nanocrystal size on carboxylate formation. Catalysis Science and Technology, 2016, 6, 5336-5349.	4.1	64
63	Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane. Applied Catalysis B: Environmental, 2016, 195, 1-8.	20.2	178
64	Promotion of the Waterâ€Gasâ€Shift Reaction by Nickel Hydroxyl Species in Partially Reduced Nickelâ€Containing Phyllosilicate Catalysts. ChemCatChem, 2016, 8, 1308-1318.	3.7	71
65	Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction. Catalysis Science and Technology, 2016, 6, 4327-4336.	4.1	57
66	Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Applied Catalysis B: Environmental, 2016, 188, 324-341.	20.2	249
67	Progress in Synthesis of Highly Active and Stable Nickelâ€Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem, 2015, 8, 3556-3575.	6.8	355
68	Anti oking Ni/SiO ₂ Catalyst for Dry Reforming of Methane: Role of Oleylamine/Oleic Acid Organic Pair. ChemCatChem, 2015, 7, 4188-4196.	3.7	62
69	Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chemical Engineering Journal, 2015, 278, 62-78.	12.7	282
70	Ni and/or Ni–Cu alloys supported over SiO ₂ catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction. Catalysis Science and Technology, 2015, 5, 4398-4409.	4.1	92
71	Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: Effect of carbon chain number and amine concentration. Applied Catalysis A: General, 2015, 503, 34-42.	4.3	65
72	Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions. Applied Catalysis B: Environmental, 2015, 172-173, 116-128.	20.2	174

#	Article	IF	CITATIONS
73	CO2 as an Oxidant for High-Temperature Reactions. Frontiers in Energy Research, 2015, 3, .	2.3	32
74	A highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction. Chemical Communications, 2015, 51, 16324-16326.	4.1	54
75	Highly dispersed supported metal catalysts prepared via in-situ self-assembled core-shell precursor route. International Journal of Hydrogen Energy, 2015, 40, 13388-13398.	7.1	19
76	Facile Synthesis of High Surface Area Yolk–Shell Ni@Ni Embedded SiO ₂ via Ni Phyllosilicate with Enhanced Performance for CO ₂ Reforming of CH ₄ . ChemCatChem, 2015, 7, 160-168.	3.7	106
77	Steam reforming of biomass tar model compound at relatively low steam-to-carbon condition over CaO-doped nickel–iron alloy supported over iron–alumina catalysts. Applied Catalysis A: General, 2015, 490, 24-35.	4.3	83
78	Simultaneous Tuning Porosity and Basicity of Nickel@Nickel–Magnesium Phyllosilicate Core–Shell Catalysts for CO ₂ Reforming of CH ₄ . Langmuir, 2014, 30, 14694-14705.	3.5	139
79	An in situ self-assembled core–shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. Journal of Materials Chemistry A, 2014, 2, 7837.	10.3	46
80	Nickel–Iron Alloy Supported over Iron–Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound. ACS Catalysis, 2014, 4, 289-301.	11.2	263
81	A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane. Catalysis Science and Technology, 2014, 4, 2107.	4.1	151
82	Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO ₂ Nanocomposite: Superb Catalyst toward Methane CO ₂ Reforming Reaction. ACS Catalysis, 2014, 4, 1526-1536.	11.2	416
83	High performance of Mg–La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure. International Journal of Hydrogen Energy, 2013, 38, 13631-13642.	7.1	108
84	Inverse NiAl ₂ O ₄ on LaAlO ₃ –Al ₂ O ₃ : Unique Catalytic Structure for Stable CO ₂ Reforming of Methane. Journal of Physical Chemistry C, 2013, 117, 8120-8130.	3.1	171
85	Steam reforming of toluene as a biomass tar model compoundÂover CeO2 promoted Ni/CaO–Al2O3 catalytic systems. International Journal of Hydrogen Energy, 2013, 38, 13938-13949.	7.1	220
86	Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy, 2012, 1, 674-686.	16.0	144