
Stig Pedersen-Bjergaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquidâ^'Liquidâ^'Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Analytical Chemistry, 1999, 71, 2650-2656.	6.5	1,139
2	Electrokinetic migration across artificial liquid membranes. Journal of Chromatography A, 2006, 1109, 183-190.	3.7	570
3	Developments in hollow fibre-based, liquid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2004, 23, 1-10.	11.4	469
4	Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. Journal of Chromatography A, 2008, 1184, 132-142.	3.7	440
5	Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Analytica Chimica Acta, 2008, 624, 253-268.	5.4	368
6	Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography A, 2000, 873, 3-11.	3.7	280
7	The ten principles of green sample preparation. TrAC - Trends in Analytical Chemistry, 2022, 148, 116530.	11.4	220
8	Electrokinetic migration of acidic drugs across a supported liquid membrane. Journal of Chromatography A, 2007, 1152, 220-225.	3.7	215
9	Electrokinetic migration across artificial liquid membranes. Journal of Chromatography A, 2006, 1124, 29-34.	3.7	207
10	Simulation of flux during electro-membrane extraction based on the Nernst–Planck equation. Journal of Chromatography A, 2007, 1174, 104-111.	3.7	204
11	Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 817, 3-12.	2.3	182
12	Electromembrane extraction of peptides. Journal of Chromatography A, 2008, 1194, 143-149.	3.7	174
13	Microextraction across supported liquid membranes forced by pH gradients and electrical fields. Journal of Chromatography A, 2007, 1157, 38-45.	3.7	157
14	Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters at Spitsbergen and in Norway. Journal of Chromatography A, 2008, 1185, 194-205.	3.7	156
15	Low-voltage electromembrane extraction of basic drugs from biological samples. Journal of Chromatography A, 2008, 1180, 1-9.	3.7	152
16	Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug. Journal of Chromatography A, 2001, 909, 87-93.	3.7	149
17	Liquid-phase microextraction and capillary electrophoresis of acidic drugs. Electrophoresis, 2000, 21, 579-585.	2.4	144
18	Recovery, enrichment and selectivity in liquid-phase microextraction. Journal of Chromatography A, 2002, 963, 3-17.	3.7	140

#	Article	IF	CITATIONS
19	Parameters affecting electro membrane extraction of basic drugs. Journal of Separation Science, 2008, 31, 753-759.	2.5	139
20	The modern role of smartphones in analytical chemistry. TrAC - Trends in Analytical Chemistry, 2019, 118, 548-555.	11.4	137
21	Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Analytical and Bioanalytical Chemistry, 2009, 393, 921-928.	3.7	130
22	Electromembrane extraction: Overview of the last decade. TrAC - Trends in Analytical Chemistry, 2019, 113, 357-363.	11.4	126
23	On-chip electro membrane extraction. Microfluidics and Nanofluidics, 2010, 9, 881-888.	2.2	121
24	Liquid–liquid extraction procedures for sample enrichment in capillary zone electrophoresis. Journal of Chromatography A, 2000, 902, 91-105.	3.7	119
25	Electromembrane extraction. TrAC - Trends in Analytical Chemistry, 2017, 95, 47-56.	11.4	118
26	Simultaneous extraction of acidic and basic drugs at neutral sample pH: A novel electro-mediated microextraction approach. Journal of Chromatography A, 2010, 1217, 6661-6667.	3.7	117
27	Analytical Microextraction: Current Status and Future Trends. Journal of Chromatographic Science, 2006, 44, 291-307.	1.4	105
28	Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport. Journal of Chromatography A, 2003, 998, 61-72.	3.7	102
29	Rapid isolation of angiotensin peptides from plasma by electromembrane extraction. Journal of Chromatography A, 2009, 1216, 6900-6905.	3.7	99
30	On-Chip Electro Membrane Extraction with Online Ultraviolet and Mass Spectrometric Detection. Analytical Chemistry, 2011, 83, 44-51.	6.5	93
31	Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. Journal of Mass Spectrometry, 2003, 38, 16-26.	1.6	88
32	Recent developments in electromembrane extraction. Analytical Methods, 2013, 5, 4549-4557.	2.7	88
33	Selectivity in microemulsion electrokinetic chromatography. Journal of Chromatography A, 2000, 897, 375-381.	3.7	87
34	Stereospecific determination of citalopram and desmethylcitalopram by capillary electrophoresis and liquid-phase microextraction. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33, 263-273.	2.8	87
35	Liquid-phase microextraction based on carrier mediated transport combined with liquid chromatography–mass spectrometry. Journal of Chromatography A, 2005, 1072, 29-36.	3.7	87
36	Kinetic electro membrane extraction under stagnant conditions—Fast isolation of drugs from untreated human plasma. Journal of Chromatography A, 2010, 1217, 5050-5056.	3.7	87

#	Article	IF	CITATIONS
37	Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. Journal of Pharmaceutical Analysis, 2020, 10, 109-122.	5.3	84
38	Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction. Analytica Chimica Acta, 2012, 742, 10-16.	5.4	83
39	Liquid-phase microextraction combined with capillary electrophoresis, a promising tool for the determination of chiral drugs in biological matrices. Journal of Chromatography A, 2002, 963, 303-312.	3.7	82
40	Microemulsion electrokinetic chromatography in suppressed electroosmotic flow environment. Journal of Chromatography A, 2000, 876, 201-211.	3.7	81
41	Emerging Extraction Strategies in Analytical Chemistry. Analytical Chemistry, 2020, 92, 2-15.	6.5	80
42	Microemulsion electrokinetic chromatography – or solvent-modified micellar electrokinetic chromatography?. TrAC - Trends in Analytical Chemistry, 2001, 20, 614-619.	11.4	79
43	Separation of neutral compounds by microemulsion electrokinetic chromatography: Fundamental studies on selectivity. Electrophoresis, 2001, 22, 1330-1336.	2.4	78
44	Drop-to-drop microextraction across a supported liquid membrane by an electrical field under stagnant conditions. Journal of Chromatography A, 2009, 1216, 1496-1502.	3.7	75
45	Electromembrane Extraction from Biological Fluids. Analytical Sciences, 2011, 27, 965-972.	1.6	75
46	Electromembrane extraction–Recent trends and where to go. Journal of Pharmaceutical Analysis, 2017, 7, 141-147.	5.3	75
47	Electromembrane extraction: a new technique for accelerating bioanalytical sample preparation. Bioanalysis, 2011, 3, 787-797.	1.5	74
48	Development of a flat membrane based device for electromembrane extraction: A new approach for exhaustive extraction of basic drugs from human plasma. Journal of Chromatography A, 2014, 1326, 7-12.	3.7	74
49	On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry. Analyst, The, 2012, 137, 3321.	3.5	72
50	Organic solvents in electromembrane extraction: recent insights. Reviews in Analytical Chemistry, 2016, 35, 169-183.	3.2	72
51	Hollow fiber-liquid-phase microextraction of fungicides from orange juices. Journal of Chromatography A, 2010, 1217, 1989-1994.	3.7	71
52	Exhaustive electromembrane extraction of some basic drugs from human plasma followed by liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57, 33-38.	2.8	71
53	Reduction of extraction times in liquid-phase microextraction. Biomedical Applications, 2001, 760, 219-226.	1.7	70
54	Liquid-phase microextraction of protein-bound drugs under non-equilibrium conditions. Analyst, The, 2002, 127, 608-613.	3.5	69

#	Article	IF	CITATIONS
55	Liquid-phase microextraction of drugs from human breast milk. Analytica Chimica Acta, 2003, 491, 155-161.	5.4	69
56	25,000-fold pre-concentration in a single step with liquid-phase microextraction. Analytica Chimica Acta, 2007, 592, 1-8.	5.4	65
57	Electromembrane extraction for pharmaceutical and biomedical analysis – Quo vadis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 97-107.	2.8	65
58	Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography. TrAC - Trends in Analytical Chemistry, 2008, 27, 934-941.	11.4	64
59	Electromembrane extraction of stimulating drugs from undiluted whole blood. Journal of Chromatography A, 2012, 1232, 27-36.	3.7	63
60	Electromembrane extraction: Distribution or electrophoresis?. Electrophoresis, 2013, 34, 792-799.	2.4	63
61	Liquid-phase microextraction in a microfluidic-chip – High enrichment and sample clean-up from small sample volumes based on three-phase extraction. Analytica Chimica Acta, 2012, 735, 46-53.	5.4	61
62	Liquid-phase microextraction combined with flow-injection tandem mass spectrometry Rapid screening of amphetamines from biological matrices. Journal of Separation Science, 2001, 24, 615-622.	2.5	60
63	Selective electromembrane extraction at low voltages based on analyte polarity and charge. Journal of Chromatography A, 2012, 1248, 48-54.	3.7	60
64	Parallel artificial liquid membrane extraction: micro-scale liquid–liquid–liquid extraction in the 96-well format. Bioanalysis, 2013, 5, 1377-1385.	1.5	60
65	Fundamental studies on selectivity in 3-phase liquid-phase microextraction (LPME) of basic drugs. Journal of Separation Science, 2002, 25, 141-146.	2.5	59
66	Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater. Talanta, 2011, 86, 109-113.	5.5	58
67	Microextraction approaches for bioanalytical applications: An overview. Journal of Chromatography A, 2020, 1616, 460790.	3.7	58
68	On-column bromine- and chlorine-selected detection for capillary gas chromatography using a radio frequency plasma. Analytical Chemistry, 1993, 65, 1998-2002.	6.5	57
69	Electromembrane extraction using deep eutectic solvents as the liquid membrane. Analytica Chimica Acta, 2021, 1143, 109-116.	5.4	57
70	Potentialâ€driven peptide extractions across supported liquid membranes: Investigation of principal operational parameters. Journal of Separation Science, 2010, 33, 1665-1672.	2.5	55
71	Nano-electromembrane extraction. Analytica Chimica Acta, 2013, 785, 60-66.	5.4	55
72	Comparison of microemulsion electrokinetic chromatography and solvent-modified micellar electrokinetic chromatography. Journal of Separation Science, 2001, 24, 643-650.	2.5	53

#	Article	IF	CITATIONS
73	Fast, selective, and sensitive analysis of low-abundance peptides in human plasma by electromembrane extraction. Analytica Chimica Acta, 2012, 716, 16-23.	5.4	52
74	Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane. Analytica Chimica Acta, 2016, 934, 80-87.	5.4	52
75	Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113446.	2.8	51
76	Extraction across supported liquid membranes by use of electrical fields. Analytical and Bioanalytical Chemistry, 2007, 388, 521-523.	3.7	48
77	Combination of Electromembrane Extraction and Liquid-Phase Microextraction in a Single Step: Simultaneous Group Separation of Acidic and Basic Drugs. Analytical Chemistry, 2015, 87, 6951-6957.	6.5	48
78	Exhaustive extraction of peptides by electromembrane extraction. Analytica Chimica Acta, 2015, 853, 328-334.	5.4	48
79	Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications. Analytica Chimica Acta, 2010, 658, 133-140.	5.4	47
80	Electromembrane extraction of peptides – Fundamental studies on the supported liquid membrane. Journal of Separation Science, 2011, 34, 3410-3417.	2.5	47
81	Electromembrane extraction—Threeâ€phase electrophoresis for future preparative applications. Electrophoresis, 2014, 35, 2421-2428.	2.4	46
82	Supported liquid membranes in hollow fiber liquid-phase microextraction (LPME) – Practical considerations in the three-phase mode. Journal of Separation Science, 2007, 30, 1364-1370.	2.5	45
83	Parallel electromembrane extraction in the 96-well format. Analytica Chimica Acta, 2014, 828, 46-52.	5.4	45
84	Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes. Journal of Membrane Science, 2017, 526, 18-24.	8.2	45
85	Alginate and Chitosan Foam Combined with Electromembrane Extraction for Dried Blood Spot Analysis. Analytical Chemistry, 2012, 84, 8783-8789.	6.5	44
86	Nanoliter-Scale Electromembrane Extraction and Enrichment in a Microfluidic Chip. Analytical Chemistry, 2018, 90, 9322-9329.	6.5	44
87	Fundamental studies on the electrokinetic transfer of net cationic peptides across supported liquid membranes. Journal of Separation Science, 2011, 34, 186-195.	2.5	43
88	Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Analytica Chimica Acta, 2017, 984, 116-123.	5.4	43
89	Microplasma Mass Spectrometric Detection in Capillary Gas Chromatography. Analytical Chemistry, 1998, 70, 513-518.	6.5	42
90	Stability and efficiency of supported liquid membranes in electromembrane extraction—a link to solvent properties. Analytical and Bioanalytical Chemistry, 2014, 406, 2151-2161.	3.7	42

#	Article	IF	CITATIONS
91	Extraction for analytical scale sample preparation (IUPAC Technical Report). Pure and Applied Chemistry, 2016, 88, 649-687.	1.9	42
92	Liquid-phase microextraction combined with liquid chromatography-mass spectrometry. Extraction from small volumes of biological samples. Journal of Separation Science, 2003, 26, 1520-1526.	2.5	41
93	Liquid-phase microextraction of basic drugs - Selection of extraction mode based on computer calculated solubility data. Journal of Separation Science, 2005, 28, 1195-1203.	2.5	41
94	Parallel electromembrane extraction in a multiwell plate. Analytical and Bioanalytical Chemistry, 2014, 406, 431-440.	3.7	41
95	3D cell culture models and organâ€onâ€aâ€chip: Meet separation science and mass spectrometry. Electrophoresis, 2020, 41, 56-64.	2.4	41
96	Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography. Talanta, 2014, 120, 224-229.	5.5	40
97	Exhaustive and stable electromembrane extraction of acidic drugs from human plasma. Journal of Chromatography A, 2015, 1425, 81-87.	3.7	40
98	Mass transfer in electromembrane extraction—The link between theory and experiments. Journal of Separation Science, 2016, 39, 188-197.	2.5	39
99	Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes: Analysis of 141 cases. American Journal of Medicine, 2005, 118, 307-310.	1.5	38
100	Liquid-Phase Microextraction or Electromembrane Extraction?. Analytical Chemistry, 2019, 91, 8267-8273.	6.5	36
101	Separation of fat-soluble vitamins by hydrophobic interaction electrokinetic chromatography with tetradecylammonium ions as pseudostationary phase. Journal of Chromatography A, 1998, 807, 285-295.	3.7	35
102	Glossary of terms used in extraction (IUPAC Recommendations 2016). Pure and Applied Chemistry, 2016, 88, 517-558.	1.9	35
103	Solid-phase microextraction/capillary gas chromatography for the profiling of confiscated ecstacy and amphetamine. Chromatographia, 1999, 50, 247-252.	1.3	34
104	Rapid determination of designer benzodiazepines, benzodiazepines, and Z-hypnotics in whole blood using parallel artificial liquid membrane extraction and UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 2018, 410, 4967-4978.	3.7	32
105	Liquidâ€phase microextraction and desorption electrospray ionization mass spectrometry for identification and quantification of basic drugs in human urine. Rapid Communications in Mass Spectrometry, 2012, 26, 133-140.	1.5	31
106	Investigation of alternative supported liquid membranes in electromembrane extraction of basic drugs from human plasma. Journal of Membrane Science, 2018, 548, 176-183.	8.2	31
107	Perspective: Hollow fibre liquid-phase microextraction - principles, performance, applicability, and future directions. Scientia Chromatographica, 2013, 5, 181-189.	0.2	31
108	Selective electromembrane extraction based on isoelectric point: Fundamental studies with angiotensin II antipeptide as model analyte. Journal of Membrane Science, 2015, 481, 115-123.	8.2	30

#	Article	IF	CITATIONS
109	Determination of sulphur- and chlorine-containing compounds using capillary gas chromatography and atomic emission detection. Analytica Chimica Acta, 1992, 265, 87-92.	5.4	29
110	Factors affecting C:H and C:N ratios determined by gas chromatography coupled with atomic emission detection. Journal of High Resolution Chromatography, 1992, 15, 89-93.	1.4	29
111	Electromembrane extraction from aqueous samples containing polar organic solvents. Journal of Chromatography A, 2013, 1308, 37-44.	3.7	29
112	The potential of electromembrane extraction for bioanalytical applications. Bioanalysis, 2015, 7, 463-480.	1.5	29
113	Parallel artificial liquid membrane extraction of new psychoactive substances in plasma and whole blood. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1048, 77-84.	2.3	29
114	Environmental applications of capillary gas chromatography coupled with atomic emission detection — a review. Journal of High Resolution Chromatography, 1996, 19, 597-607.	1.4	28
115	Salt effects in electromembrane extraction. Journal of Chromatography A, 2014, 1347, 1-7.	3.7	28
116	Application of hollow cylindrical wheat stem for electromembrane extraction of thorium in water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 328-332.	3.9	28
117	On-column atomic emission detection in capillary gas chromatography using a radio frequency plasma. Journal of Separation Science, 1994, 6, 11-18.	1.0	27
118	Comparison of GC-ECD, GC-MS and GC-AED for the determination of polychlorinated biphenyls in highly contaminated marine sediments. Chromatographia, 1996, 43, 44-52.	1.3	27
119	Liquid-phase microextraction in 96-well plates - calibration and accurate quantification of pharmaceuticals in human plasma samples. Journal of Chromatography A, 2019, 1602, 117-123.	3.7	27
120	Capillary gas chromatography combined with atomic emission detection for the analysis of polychlorinated biphenyls. Journal of Chromatography A, 1996, 723, 337-347.	3.7	26
121	Electromembrane extraction as a rapid and selective miniaturized sample preparation technique for biological fluids. Bioanalysis, 2015, 7, 2203-2209.	1.5	26
122	Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids. Analytica Chimica Acta, 2018, 1005, 34-42.	5.4	26
123	Storage of oral fluid as dried spots on alginate and chitosan foam – a new concept for oral fluid collection. Bioanalysis, 2013, 5, 317-325.	1.5	25
124	Electromembrane extraction—looking into the future. Analytical and Bioanalytical Chemistry, 2019, 411, 1687-1693.	3.7	24
125	Identification of chlorinated sulfur compounds in pulp mill effluents by GC-MS and GC-AED. Chromatographia, 1993, 35, 193-198.	1.3	23
126	Liquid-phase microextraction utilising plant oils as intermediate extraction medium - Towards elimination of synthetic organic solvents in sample preparation. Journal of Separation Science, 2004, 27, 1511-1516.	2.5	23

#	Article	IF	CITATIONS
127	Determination of psilocybin in Psilocybe semilanceata by capillary zone electrophoresis. Biomedical Applications, 1997, 694, 375-381.	1.7	22
128	Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 229-236.	2.8	22
129	Dried blood spots and parallel artificial liquid membrane extraction–A simple combination of microsampling and microextraction. Analytica Chimica Acta, 2018, 1009, 56-64.	5.4	22
130	Electromembrane Extraction of Unconjugated Fluorescein Isothiocyanate from Solutions of Labeled Proteins Prior to Flow Induced Dispersion Analysis. Analytical Chemistry, 2019, 91, 6702-6708.	6.5	22
131	Experiences with Carrier-Mediated Transport in Liquid-Phase Microextraction. Journal of Chromatographic Science, 2006, 44, 308-316.	1.4	21
132	High-throughput analysis of drugs in biological fluids by desorption electrospray ionizationmass spectrometry coupled with thin liquid membrane extraction. Analyst, The, 2013, 138, 5965-5972.	3.5	21
133	Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions – Towards selective extractions of analytes based on their acid-base strength. Analytica Chimica Acta, 2016, 943, 64-73.	5.4	21
134	Efficient discrimination and removal of phospholipids during electromembrane extraction from human plasma samples. Bioanalysis, 2017, 9, 631-641.	1.5	21
135	N-, O- and P-selective on-column atomic emission detection in capillary gas chromatography. Journal of Chromatography A, 1994, 686, 109-119.	3.7	20
136	Electromembrane extraction of highly polar bases from biological samples – Deeper insight into bis(2-ethylhexyl) phosphate as ionic carrier. Analytica Chimica Acta, 2020, 1115, 23-32.	5.4	20
137	Electromembrane extraction of peptides using deep eutectic solvents as liquid membrane. Analytica Chimica Acta, 2021, 1175, 338717.	5.4	20
138	Electromembrane extraction of polar substances – Status and perspectives. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207, 114407.	2.8	20
139	Complexation-mediated electromembrane extraction of highly polar basic drugs—a fundamental study with catecholamines in urine as model system. Analytical and Bioanalytical Chemistry, 2017, 409, 4215-4223.	3.7	19
140	Electromembrane extraction of high level substances: A novel approach for selective recovery of templates in molecular imprinting. Journal of Membrane Science, 2018, 568, 30-39.	8.2	19
141	Electromembrane Extraction and Mass Spectrometry for Liver Organoid Drug Metabolism Studies. Analytical Chemistry, 2021, 93, 3576-3585.	6.5	19
142	Electromembrane extraction of streptomycin from biological fluids. Journal of Chromatography A, 2021, 1639, 461915.	3.7	19
143	Electromembrane extraction in microfluidic formats. Journal of Separation Science, 2022, 45, 246-257.	2.5	19
144	Analysis of vitamin formulations by electrokinetic chromatography utilizing tetradecylammonium ions as the pseudostationary phase. Electrophoresis, 1998, 19, 2912-2917.	2.4	18

#	Article	IF	CITATIONS
145	Capillary gas chromatography coupled with negative ionization microplasma mass spectrometry for halogen-selective detection. Journal of Analytical Atomic Spectrometry, 2000, 15, 55-60.	3.0	18
146	Parallel artificial liquid membrane extraction of acidic drugs from human plasma. Analytical and Bioanalytical Chemistry, 2015, 407, 2811-2819.	3.7	18
147	Determination of psychoactive drugs in serum using conductive vial electromembrane extraction combined with UHPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1183, 122926.	2.3	18
148	Molecular formula determination of halogenated compounds in environmental samples using gas chromatography and atomic emission dection. Journal of Separation Science, 1992, 4, 163-170.	1.0	17
149	Environmental screening by capillary gas chromatography combined with mass spectrometry and atomic emission spectroscopy. Chemosphere, 1996, 32, 1103-1115.	8.2	17
150	Simultaneous Element-Selective Detection of C, F, Cl, Br, and I by Capillary Gas Chromatography Coupled with Microplasma Mass Spectrometry. Journal of High Resolution Chromatography, 1998, 21, 633-639.	1.4	17
151	Capillary gas chromatography coupled with microplasma mass spectrometry for organotin speciation. Journal of Chromatography A, 1999, 849, 553-562.	3.7	17
152	Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism. Analytical and Bioanalytical Chemistry, 2014, 406, 421-429.	3.7	17
153	Electromembrane extraction of substances with weakly basic properties: a fundamental study with benzodiazepines. Bioanalysis, 2018, 10, 769-781.	1.5	17
154	Impact of ion balance in electromembrane extraction. Analytica Chimica Acta, 2020, 1124, 129-136.	5.4	17
155	Electromembrane Extraction Using Sacrificial Electrodes. Analytical Chemistry, 2020, 92, 5595-5603.	6.5	17
156	Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples. Talanta, 2020, 217, 121001.	5.5	17
157	Selectivity and efficiency of electromembrane extraction of polar bases with different liquid membranes—Link to analyte properties. Journal of Separation Science, 2021, 44, 2631-2641.	2.5	17
158	Strategies for the capillary electrophoretic separation of indole alkaloids inPsilocybe semilanceata. Electrophoresis, 1998, 19, 27-30.	2.4	16
159	One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1043, 25-32.	2.3	16
160	Organic-solvent-free electromembrane extraction based on semi-interpenetrating polymer networks. Green Chemistry, 2021, 23, 1782-1793.	9.0	16
161	Calculation of elemental ratios by on-column radiofrequency plasma atomic emission detection coupled with capillary gas chromatography. Journal of Chromatography A, 1996, 736, 157-164.	3.7	15
162	Unidirectional solute transfer using a Janus membrane. Journal of Membrane Science, 2020, 596, 117723.	8.2	15

#	Article	IF	CITATIONS
163	Screening for central nervous system-stimulating drugs in human plasma by liquid chromatography with mass spectrometric detection. Journal of Chromatography A, 2004, 1031, 203-211.	3.7	14
164	State-of-the art of selective detection and identification of I-, Br-, Cl-, and F-containing compounds in gas chromatography and liquid chromatography. Journal of Chromatography A, 2004, 1050, 45-62.	3.7	14
165	Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow–Flow Electro Membrane Extraction-Mass Spectrometry System with LC–MS. Analytical Chemistry, 2015, 87, 5774-5781.	6.5	14
166	Maghemite nanoparticleâ€decorated hollow fiber electromembrane extraction combined with dispersive liquid–liquid microextraction for determination of thymol from <i>Carum copticum</i> . Journal of the Science of Food and Agriculture, 2017, 97, 1517-1523.	3.5	14
167	Parallel artificial liquid membrane extraction of psychoactive analytes: a novel approach in therapeutic drug monitoring. Bioanalysis, 2018, 10, 385-395.	1.5	14
168	Effect of make-up gas in on-column atomic emission spectrometric detection for capillary gas chromatography. Journal of Analytical Atomic Spectrometry, 1996, 11, 117.	3.0	13
169	The potential application of electromembrane extraction for the analysis of peptides in biological fluids. Bioanalysis, 2012, 4, 1971-1973.	1.5	13
170	On hip electromembrane extraction of acidic drugs. Electrophoresis, 2019, 40, 2514-2521.	2.4	13
171	Green microfluidic liquid-phase microextraction of polar and non-polar acids from urine. Analytical and Bioanalytical Chemistry, 2021, 413, 3717-3723.	3.7	13
172	Continuous electromembrane extraction coupled with mass spectrometry – Perspectives and challenges. Analytica Chimica Acta, 2018, 999, 27-36.	5.4	12
173	Electromembrane extraction with solvent modification of the acceptor solution: improved mass transfer of drugs of abuse from human plasma. Bioanalysis, 2019, 11, 755-771.	1.5	12
174	Microfluidic liquid-phase microextraction based on natural deep eutectic solvents immobilized in agarose membranes. Journal of Chromatography A, 2021, 1657, 462580.	3.7	12
175	Determination of chlorinated and brominated micropollutants by capillary gas chromatography coupled with on-column radio frequency plasma atomic emission detection. Journal of High Resolution Chromatography, 1997, 20, 201-207.	1.4	11
176	Fully Automated Electro Membrane Extraction Autosampler for LC–MS Systems Allowing Soft Extractions for High-Throughput Applications. Analytical Chemistry, 2016, 88, 6797-6804.	6.5	11
177	Electromembrane extraction of peptides and amino acids – status and perspectives. Bioanalysis, 2021, 13, 277-289.	1.5	11
178	Towards exhaustive electromembrane extraction under stagnant conditions. Analytica Chimica Acta, 2020, 1104, 1-9.	5.4	11
179	Evaluation of a low-resolution near-IR monochromator for atomic emission detection in capillary gas chromatography. Journal of High Resolution Chromatography, 1995, 18, 9-14.	1.4	10
180	Analysis of Semivolatile Pharmaceuticals and Pollutants in Organic Micro Extracts Using Hot Cell Membrane Inlet Mass Spectrometry. Analytical Chemistry, 2009, 81, 4010-4014.	6.5	10

#	Article	IF	CITATIONS
181	Direct coupling of a flow–flow electromembrane extraction probe to LC-MS. Analytica Chimica Acta, 2016, 905, 93-99.	5.4	10
182	Electromembrane extraction of anthracyclines from plasma: Comparison with conventional extraction techniques. Talanta, 2021, 223, 121748.	5.5	10
183	Membrane-based liquid-phase microextraction of basic pharmaceuticals – A study on the optimal extraction window. Journal of Chromatography A, 2022, 1664, 462769.	3.7	10
184	Effect of sample matrices on supported liquid membrane: Efficient electromembrane extraction of cathinones from biological samples. Talanta, 2022, 240, 123175.	5.5	10
185	Capillary Gas Chromatography Coupled with Microplasma Mass Spectrometry - Improved Ion Source Design Compatible with Bench-Top Mass Spectrometric Instrumentation. Journal of High Resolution Chromatography, 1998, 21, 282-286.	1.4	9
186	Direct coupling of electromembrane extraction to mass spectrometry - Advancing the probe functionality toward measurements of zwitterionic drug metabolites. Analytica Chimica Acta, 2017, 983, 121-129.	5.4	8
187	Advanced microextraction techniques for the analysis of amphetamines in human breast milk and their comparison with conventional methods. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114549.	2.8	8
188	Electromembrane extraction – looking closer into the liquid membrane. Advances in Sample Preparation, 2022, 2, 100020.	3.0	8
189	Solid-phase microextraction coupled with atomic emission spectroscopy––rapid screening for volatile chlorinated compounds. Chemosphere, 2002, 49, 1349-1355.	8.2	7
190	Green and sustainable drug analysis – Combining microsampling and microextraction of drugs of abuse. Sustainable Chemistry and Pharmacy, 2021, 24, 100517.	3.3	7
191	On-Chip Electromembrane Extraction for Monitoring Drug Metabolism in Real Time by Electrospray Ionization Mass Spectrometry. Methods in Molecular Biology, 2015, 1274, 171-182.	0.9	7
192	A rapid and versatile microfluidic method for the simultaneous extraction of polar and non-polar basic pharmaceuticals from human urine. Analytica Chimica Acta, 2022, 1208, 339829.	5.4	7
193	Evaluation of a radio frequency plasma for oxygen-selective detection in capillary gas chromatography. Journal of High Resolution Chromatography, 1992, 15, 677-681.	1.4	6
194	Recent progress in sample extraction. TrAC - Trends in Analytical Chemistry, 2007, 26, 843-846.	11.4	6
195	Removal of Polymerase Chain Reaction Inhibitors by Electromembrane Extraction. Analytical Chemistry, 2021, 93, 11488-11496.	6.5	6
196	The electromembrane extraction of pharmaceutical compounds from animal tissues. Analytica Chimica Acta, 2021, 1177, 338742.	5.4	6
197	Ultrasound-assisted electromembrane extraction with supported semi-liquid membrane. Analytica Chimica Acta, 2021, 1184, 339038.	5.4	6
198	Capillary gas chromatography combined with atomic emission detection for the analysis of DDT and metabolites. Chemosphere, 1998, 36, 213-224.	8.2	5

#	Article	IF	CITATIONS
199	Determination of Extractable Organic Chlorine and Bromine by Probe Injection Dual-Microplasma Atomic Emission Spectrometry. Analytical Chemistry, 1997, 69, 3558-3564.	6.5	4
200	Comparison of on-column and splitless injection in capillary gas chromatography coupled with atomic emission detection. Journal of High Resolution Chromatography, 1997, 20, 47-49.	1.4	4
201	New sample preparation technologies. Analytical and Bioanalytical Chemistry, 2009, 393, 779-779.	3.7	4
202	Challenges and new directions in analytical sample preparation. Analytical and Bioanalytical Chemistry, 2014, 406, 375-376.	3.7	4
203	Dried Blood Spots on Carboxymethyl Cellulose Sheets: Rapid Sample Preparation Based on Dissolution and Precipitation. Chromatographia, 2016, 79, 509-514.	1.3	4
204	Electromembrane extraction of sodium dodecyl sulfate from highly concentrated solutions. Analyst, The, 2020, 145, 4957-4963.	3.5	4
205	Versatile Integration of Liquid-Phase Microextraction and Fluorescent Aptamer Beacons: A Synergistic Effect for Bioanalysis. Analytical Chemistry, 2021, 93, 14323-14333.	6.5	4
206	Determination of brominated alkylbenzenes in nickel industry sludge by capillary gas chromatography. Chromatographia, 1997, 46, 411-418.	1.3	3
207	Influence of acidâ€base dissociation equilibria during electromembrane extraction. Journal of Separation Science, 2020, 43, 3120-3128.	2.5	3
208	Direct Electromembrane Extractionâ€Based Mass Spectrometry: A Tool for Studying Drug Metabolism Properties of Liver Organoids. Analysis & Sensing, 0, , .	2.0	3
209	Drug Monitoring in Human Plasma by Capillary Gas Chromatography Coupled with Atomic Emission Detection. Potential and Limitations. Journal of High Resolution Chromatography, 1999, 22, 123-125.	1.4	2
210	High-Performance Liquid Chromatography (HPLC) and High-Performance Liquid Chromatography-Mass Spectrometry (LC-MS). , 2015, , 123-172.		2
211	Microextraction With Supported Liquid Membranes. , 2020, , 241-263.		2
212	Quality papers on sample preparation and extraction. Talanta Open, 2021, 3, 100043.	3.7	2
213	General Chromatographic Theory and Principles. , 2015, , 31-60.		1
214	Biological Samples: Their Composition and Properties, and Their Collection and Storage. , 2015, , 23-30.		1
215	Analytical microextraction with supported liquid membranes. , 2021, , 97-109.		1
216	Title is missing!. Journal of Chromatography A, 2007, 1174, 1.	3.7	0

#	Article	IF	CITATIONS
217	Sample preparation $\hat{a} \in $ a modern and complex field. Journal of Separation Science, 2012, 35, NA.	2.5	0

Physicochemical Properties of Drug Substances. , 2015, , 9-22.