Pierre Samozino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3192872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 2012, 112, 3921-3930.	1.2	313
2	Technical Ability of Force Application as a Determinant Factor of Sprint Performance. Medicine and Science in Sports and Exercise, 2011, 43, 1680-1688.	0.2	312
3	Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. International Journal of Sports Physiology and Performance, 2016, 11, 267-272.	1.1	274
4	Optimal Force–Velocity Profile in Ballistic Movements—Altius. Medicine and Science in Sports and Exercise, 2012, 44, 313-322.	0.2	234
5	Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production. Frontiers in Physiology, 2015, 6, 404.	1.3	210
6	A simple method for measuring force, velocity and power output during squat jump. Journal of Biomechanics, 2008, 41, 2940-2945.	0.9	194
7	Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Frontiers in Physiology, 2016, 7, 677.	1.3	167
8	Biomechanics and Physiology of Uphill and Downhill Running. Sports Medicine, 2017, 47, 615-629.	3.1	162
9	Acceleration capability in elite sprinters and ground impulse: Push more, brake less?. Journal of Biomechanics, 2015, 48, 3149-3154.	0.9	98
10	Very-Heavy Sled Training for Improving Horizontal-Force Output in Soccer Players. International Journal of Sports Physiology and Performance, 2017, 12, 840-844.	1.1	98
11	Optimal Loading for Maximizing Power During Sled-Resisted Sprinting. International Journal of Sports Physiology and Performance, 2017, 12, 1069-1077.	1.1	83
12	Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ, 2018, 6, e5937.	0.9	81
13	A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. Journal of Biomechanics, 2019, 94, 82-87.	0.9	79
14	Effect of countermovement on power–force–velocity profile. European Journal of Applied Physiology, 2014, 114, 2281-2288.	1.2	75
15	Fatigue associated with prolonged graded running. European Journal of Applied Physiology, 2016, 116, 1859-1873.	1.2	72
16	Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump. International Journal of Sports Physiology and Performance, 2017, 12, 36-43.	1.1	71
17	Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS ONE, 2018, 13, e0195477.	1.1	66
18	Methods of Power-Force-Velocity Profiling During Sprint Running: A Narrative Review. Sports Medicine, 2017, 47, 1255-1269.	3.1	62

PIERRE SAMOZINO

#	Article	IF	CITATIONS
19	Jumping ability: A theoretical integrative approach. Journal of Theoretical Biology, 2010, 264, 11-18.	0.8	61
20	Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE, 2019, 14, e0216681.	1.1	60
21	A simple field method to identify foot strike pattern during running. Journal of Biomechanics, 2014, 47, 1588-1593.	0.9	57
22	When Jump Height is not a Good Indicator of Lower Limb Maximal Power Output: Theoretical Demonstration, Experimental Evidence and Practical Solutions. Sports Medicine, 2019, 49, 999-1006.	3.1	54
23	Differences in Sprint Mechanical Force–Velocity Profile Between Trained Soccer and Futsal Players. International Journal of Sports Physiology and Performance, 2019, 14, 478-485.	1.1	50
24	Why Does Power Output Decrease at High Pedaling Rates during Sprint Cycling?. Medicine and Science in Sports and Exercise, 2007, 39, 680-687.	0.2	49
25	Individual Sprint Force-Velocity Profile Adaptations to In-Season Assisted and Resisted Velocity-Based Training in Professional Rugby. Sports, 2020, 8, 74.	0.7	47
26	Seasonal Changes in the Sprint Acceleration Force-Velocity Profile of Elite Male Soccer Players. Journal of Strength and Conditioning Research, 2022, 36, 70-74.	1.0	47
27	Effect of the Fatigue Induced by a 110-km Ultramarathon on Tibial Impact Acceleration and Lower Leg Kinematics. PLoS ONE, 2016, 11, e0151687.	1.1	40
28	Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. Journal of Biomechanics, 2016, 49, 1765-1771.	0.9	40
29	Foot strike pattern and impact continuous measurements during a trail running race: proof of concept in a world-class athlete. Footwear Science, 2015, 7, 127-137.	0.8	38
30	Improving Mechanical Effectiveness During Sprint Acceleration: Practical Recommendations and Guidelines. Strength and Conditioning Journal, 2020, 42, 45-62.	0.7	38
31	Power-Force-Velocity Profiling of Sprinting Athletes: Methodological and Practical Considerations When Using Timing Gates. Journal of Strength and Conditioning Research, 2020, 34, 1769-1773.	1.0	36
32	Force–Velocity Properties' Contribution to Bilateral Deficit during Ballistic Push-off. Medicine and Science in Sports and Exercise, 2014, 46, 107-114.	0.2	32
33	Where does the One-Repetition Maximum Exist on the Force-Velocity Relationship in Squat?. International Journal of Sports Medicine, 2017, 38, 1035-1043.	0.8	32
34	Individual acceleration-speed profile in-situ: A proof of concept in professional football players. Journal of Biomechanics, 2021, 123, 110524.	0.9	29
35	Lower Limb Force, Velocity, Power Capabilities during Leg Press and Squat Movements. International Journal of Sports Medicine, 2017, 38, 1083-1089.	0.8	28
36	Assessment of the forceâ€velocity relationship during vertical jumps: influence of the starting position, analysis procedures and number of loads. European Journal of Sport Science, 2020, 20, 614-623.	1.4	28

PIERRE SAMOZINO

#	Article	IF	CITATIONS
37	A Simple Method for Assessing Upper-Limb Force–Velocity Profile in Bench Press. International Journal of Sports Physiology and Performance, 2018, 13, 200-207.	1.1	24
38	lsometric versus Dynamic Measurements of Fatigue: Does Age Matter? A Meta-analysis. Medicine and Science in Sports and Exercise, 2018, 50, 2132-2144.	0.2	22
39	Optimal mechanical forceâ€velocity profile for sprint acceleration performance. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 559-575.	1.3	22
40	Determining friction and effective loading for sled sprinting. Journal of Sports Sciences, 2017, 35, 2198-2203.	1.0	20
41	Fatigue and recovery measured with dynamic properties vs isometric force: effects of exercise intensity. Journal of Experimental Biology, 2019, 222, .	0.8	20
42	Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. International Journal of Environmental Research and Public Health, 2021, 18, 7827.	1.2	15
43	Force output in giant-slalom skiing: A practical model of force application effectiveness. PLoS ONE, 2021, 16, e0244698.	1.1	9
44	Assessing Horizontal Force Production in Resisted Sprinting: Computation and Practical Interpretation. International Journal of Sports Physiology and Performance, 2019, 14, 689-693.	1.1	8
45	Optimal load for a torque-velocity relationship test during cycling. European Journal of Applied Physiology, 2020, 120, 2455-2466.	1.2	7
46	Consequences of an ultra-trail on impact and lower limb kinematics in male and female runners. Footwear Science, 2013, 5, S14-S15.	0.8	6
47	Lower limb forceâ€production capacities in alpine skiing disciplines. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 848-860.	1.3	6
48	Uphill sprinting load– and force–velocity profiling: Assessment and potential applications. Journal of Sports Sciences, 2022, 40, 281-287.	1.0	5
49	The effect of countermovement on force production capacity depends on extension velocity: A study of alpine skiers and sprinters. Journal of Sports Sciences, 2021, 39, 1-11.	1.0	4
50	Force-velocity-power profiling of maximal effort sprinting, jumping and hip thrusting: Exploring the importance of force orientation specificity for assessing neuromuscular function. Journal of Sports Sciences, 2021, 39, 2115-2122.	1.0	4
51	Effect of ground technicity on cardioâ€respiratory and biomechanical parameters in uphill trail running. European Journal of Sport Science, 2022, 22, 1836-1846.	1.4	4
52	Ratio of forces during sprint acceleration: A comparison of different calculation methods. Journal of Biomechanics, 2021, 127, 110685.	0.9	3
53	The linear regression model provides the force-velocity relationship parameters with the highest reliability. Sports Biomechanics, 2022, , 1-20.	0.8	3
54	Bilateral deficit magnitude increases with velocity during a half-squat exercise. Journal of Sports Sciences, 2022, 40, 1206-1213.	1.0	2