Roberto Gaetani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/319270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012, 33, 1782-1790.	5.7	347
2	Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.	5.7	265
3	A Bioprinted Cardiac Patch Composed of Cardiacâ€Specific Extracellular Matrix and Progenitor Cells for Heart Repair. Advanced Healthcare Materials, 2018, 7, e1800672.	3.9	181
4	Evidence for Mechanisms Underlying theÂFunctional Benefits of a Myocardial Matrix Hydrogel for Post-MI Treatment. Journal of the American College of Cardiology, 2016, 67, 1074-1086.	1.2	127
5	Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovascular Research, 2009, 82, 411-420.	1.8	104
6	Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomaterials Science, 2014, 2, 735-744.	2.6	101
7	Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S9-S14.	3.3	94
8	Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nature Communications, 2019, 10, 1735.	5.8	79
9	Concise Review: Heart Regeneration and the Role of Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 434-443.	1.6	69
10	Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue Engineering - Part C: Methods, 2018, 24, 697-708.	1.1	60
11	Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials, 2011, 32, 9271-9281.	5.7	59
12	Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells. Cell Transplantation, 2016, 25, 1653-1663.	1.2	58
13	Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts. Methods in Molecular Biology, 2012, 879, 327-338.	0.4	57
14	When Stiffness Matters: Mechanosensing in Heart Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 334.	1.8	50
15	Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium. Advanced Healthcare Materials, 2016, 5, 1071-1079.	3.9	42
16	Serum and supplement optimization for <scp>EU GMP</scp> â€compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 2014, 18, 624-634.	1.6	41
17	Stem cell-based therapy: Improving myocardial cell delivery. Advanced Drug Delivery Reviews, 2016, 106, 104-115.	6.6	36
18	Ion Cyclotron Resonance as a Tool in Regenerative Medicine. Electromagnetic Biology and Medicine, 2008, 27, 127-133.	0.7	34

Roberto Gaetani

#	Article	IF	CITATIONS
19	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	1.6	34
20	Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	1.6	30
21	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
22	Bone marrowâ€derived cells can acquire cardiac stem cells properties in damaged heart. Journal of Cellular and Molecular Medicine, 2011, 15, 63-71.	1.6	26
23	Decellularized Extracellular Matrix Hydrogels as a Delivery Platform for MicroRNA and Extracellular Vesicle Therapeutics. Advanced Therapeutics, 2018, 1, 1800032.	1.6	26
24	Injectable Myocardial Matrix Hydrogel Mitigates Negative Left Ventricular Remodeling in a Chronic Myocardial Infarction Model. JACC Basic To Translational Science, 2021, 6, 350-361.	1.9	22
25	Building an Artificial Cardiac Microenvironment: A Focus on the Extracellular Matrix. Frontiers in Cell and Developmental Biology, 2020, 8, 559032.	1.8	19
26	Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function. Cardiovascular Research, 2013, 99, 83-91.	1.8	15
27	c-kit cardiac progenitor cells: What is their potential?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E78; author reply E79.	3.3	8
28	Tissue Engineering for Cardiac Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 1-27.	0.7	4
29	Acellular Injectable Biomaterials for Treating Cardiovascular Disease. , 2016, , 309-325.		3
30	Cardiac stem cells can be generated in damaged heart from bone marrow-derived cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S100.	0.9	1
31	Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology <scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> sociation <scp>W</scp> inter <scp>M</scp> eeting on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European lournal of Heart Failure. 2014. 16. 6-14.	2.9	1
32	Extremely low frequency magnetic field induces differentiation of the human cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S91.	0.9	0
33	Editorial to "Evaluating biomaterials and implanted devices― Drug Discovery Today: Disease Models, 2017, 24, 1-3.	1.2	0
34	Bone Marrow-Derived Cells Regenerate Kit+ Cardiac Stem Cells (CSCs) in Damaged Heart Blood, 2006, 108, 1681-1681.	0.6	0
35	Evidence for the Existence of Resident Cardiac Stem Cells. , 2011, , 131-147.		0