
Jeehiun K Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3192557/publications.pdf Version: 2024-02-01

IFFHILM KIFF

#	Article	IF	CITATIONS
1	Nucleophilicity and Electrophilicity in the Gas Phase: Silane Hydricity. Journal of Organic Chemistry, 2022, 87, 1840-1849.	3.2	2
2	Gasâ€phase experimental and computational studies of human hypoxanthineâ€guanine phosphoribosyltransferase substrates: Intrinsic properties and biological implications. Journal of Physical Organic Chemistry, 2022, 35, .	1.9	3
3	Gas-Phase Experimental and Computational Studies of 5-Halouracils: Intrinsic Properties and Biological Implications. Journal of Organic Chemistry, 2021, 86, 6361-6370.	3.2	5
4	Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY. Journal of the American Chemical Society, 2020, 142, 20340-20350.	13.7	11
5	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	3.5	2
6	Kinetic hydricity of silane hydrides in the gas phase. Chemical Science, 2019, 10, 8002-8008.	7.4	5
7	Gas-Phase and Ionic Liquid Experimental and Computational Studies of Imidazole Acidity and Carbon Dioxide Capture. Journal of Organic Chemistry, 2019, 84, 14593-14601.	3.2	10
8	Gas-Phase Deprotonation of Benzhydryl Cations: Carbene Basicity, Multiplicity, and Rearrangements. Journal of Organic Chemistry, 2019, 84, 7685-7693.	3.2	3
9	p <i>K</i> _a Prediction. , 2018, , 503-518.		0
10	The importance of N-heterocyclic carbene basicity in organocatalysis. Organic and Biomolecular Chemistry, 2018, 16, 8230-8244.	2.8	55
11	Experimental and Computational Gas Phase Acidities of Conjugate Acids of Triazolylidene Carbenes: Rationalizing Subtle Electronic Effects. Journal of the American Chemical Society, 2017, 139, 14917-14930.	13.7	33
12	Gasâ€Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates. Chemistry - A European Journal, 2016, 22, 3881-3890.	3.3	9
13	An Isolable, Photoswitchable Nâ€Heterocyclic Carbene: Onâ€Demand Reversible Ammonia Activation. Angewandte Chemie - International Edition, 2015, 54, 11559-11563.	13.8	45
14	Reprint of "The benzoin condensation: Charge tagging of the catalyst allows for tracking by mass spectrometry― International Journal of Mass Spectrometry, 2015, 378, 169-174.	1.5	3
15	Gas Phase Studies of N-Heterocyclic Carbene-Catalyzed Condensation Reactions. Journal of Organic Chemistry, 2015, 80, 6831-6838.	3.2	11
16	Computational Studies of the Gas-Phase Thermochemical Properties of Modified Nucleobases. Journal of Organic Chemistry, 2014, 79, 11295-11300.	3.2	8
17	The benzoin condensation: Charge tagging of the catalyst allows for tracking by mass spectrometry. International Journal of Mass Spectrometry, 2014, 369, 92-97.	1.5	8
18	Divergent Mechanisms for Enzymatic Excision of 5-Formylcytosine and 5-Carboxylcytosine from DNA. Journal of the American Chemical Society, 2013, 135, 15813-15822.	13.7	69

JEEHIUN K LEE

#	Article	IF	CITATIONS
19	Assessing the Proton Affinities of N,N′-Diamidocarbenes. Journal of Organic Chemistry, 2013, 78, 10452-10458.	3.2	21
20	1,2,3-Triazoles: Gas Phase Properties. Journal of Organic Chemistry, 2013, 78, 7249-7258.	3.2	23
21	Gas-Phase Studies of Substrates for the DNA Mismatch Repair Enzyme MutY. Journal of the American Chemical Society, 2012, 134, 19839-19850.	13.7	23
22	2-Pyridone and Derivatives: Gas-Phase Acidity, Proton Affinity, Tautomer Preference, and Leaving Group Ability. Journal of Organic Chemistry, 2012, 77, 1623-1631.	3.2	35
23	Gas-Phase Studies of Purine 3-Methyladenine DNA Glycosylase II (AlkA) Substrates. Journal of the American Chemical Society, 2012, 134, 9622-9633.	13.7	28
24	Reaction mechanisms: pericyclic reactions. Annual Reports on the Progress of Chemistry Section B, 2011, 107, 266.	0.9	7
25	Reactivity of carbene•phosphine dimers: proton affinity revisited. Journal of Physical Organic Chemistry, 2011, 24, 929-936.	1.9	16
26	Stability of DNA Duplexes Containing Hypoxanthine (Inosine): Gas versus Solution Phase and Biological Implications. Journal of Organic Chemistry, 2010, 75, 1848-1854.	3.2	32
27	Proton Affinities of Phosphines versus N-Heterocyclic Carbenes. Organic Letters, 2010, 12, 4764-4767.	4.6	24
28	Reaction mechanisms : Part (ii) Pericyclic reactions. Annual Reports on the Progress of Chemistry Section B, 2010, 106, 283.	0.9	2
29	Gas-Phase Thermochemical Properties of the Damaged Base O6-Methylguanine versus Adenine and Guanine. Journal of Organic Chemistry, 2009, 74, 7429-7440.	3.2	44
30	Uracil and Thymine Reactivity in the Gas Phase: The S _N 2 Reaction and Implications for Electron Delocalization in Leaving Groups. Journal of the American Chemical Society, 2009, 131, 18376-18385.	13.7	19
31	Reaction mechanisms : Part (ii) Pericyclic reactions. Annual Reports on the Progress of Chemistry Section B, 2009, 105, 285.	0.9	6
32	Reaction mechanisms : Part (ii) Pericyclic reactions. Annual Reports on the Progress of Chemistry Section B, 2008, 104, 260.	0.9	6
33	The Acidity and Proton Affinity of the Damaged Base 1, <i>N</i> ⁶ -Ethenoadenine in the Gas Phase versus in Solution: Intrinsic Reactivity and Biological Implications. Journal of Organic Chemistry, 2008, 73, 5907-5914.	3.2	34
34	Gas-Phase Thermochemical Properties of Pyrimidine Nucleobases. Journal of Organic Chemistry, 2008, 73, 9283-9291.	3.2	59
35	Reaction mechanisms : Part (ii) Pericyclic reactions. Annual Reports on the Progress of Chemistry Section B, 2007, 103, 272.	0.9	5
36	Acidity and Proton Affinity of Hypoxanthine in the Gas Phase versus in Solution:Â Intrinsic Reactivity and Biological Implications, Journal of Organic Chemistry, 2007, 72, 6548-6555	3.2	48

JEEHIUN K LEE

#	Article	IF	CITATIONS
37	DNA stability in the gas versus solution phases: A systematic study of thirty-one duplexes with varying length, sequence, and charge level. Journal of the American Society for Mass Spectrometry, 2006, 17, 1383-1395.	2.8	29
38	Insights into nucleic acid reactivity through gas-phase experimental and computational studies. International Journal of Mass Spectrometry, 2005, 240, 261-272.	1.5	38
39	Gas-Phase Acidity Studies of Multiple Sites of Adenine and Adenine Derivatives. Journal of Organic Chemistry, 2004, 69, 7018-7025.	3.2	39
40	The gas phase proton affinity of uracil: measuring multiple basic sites and implications for the enzyme mechanism of orotidine 5′-monophosphate decarboxylase. Chemical Communications, 2002, , 2354-2355.	4.1	42
41	Acidity of Adenine and Adenine Derivatives and Biological Implications. A Computational and Experimental Gas-Phase Study. Journal of Organic Chemistry, 2002, 67, 8360-8365.	3.2	46
42	The acidity of uracil and uracil analogs in the gas phase: Four surprisingly acidic sites and biological implications. Journal of the American Society for Mass Spectrometry, 2002, 13, 985-995.	2.8	81
43	The Anionic Oxy-Cope Rearrangement:  Using Chemical Reactivity to Reveal the Facile Isomerization of the Parent Substrates in the Gas Phase. Journal of Organic Chemistry, 2001, 66, 7247-7253.	3.2	10
44	The Acidity of Uracil from the Gas Phase to Solution:Â The Coalescence of the N1 and N3 Sites and Implications for Biological Glycosylation. Journal of the American Chemical Society, 2000, 122, 6258-6262.	13.7	125
45	13C Kinetic Isotope Effects and the Mechanism of the Uncatalyzed Decarboxylation of Orotic Acid. Journal of the American Chemical Society, 2000, 122, 3296-3300.	13.7	46
46	New Paradigm for Anionic Heteroatom Cope Rearrangements. Journal of the American Chemical Society, 1998, 120, 205-206.	13.7	40