Damien Voiry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3192133/publications.pdf

Version: 2024-02-01

61984 123424 22,240 61 43 61 citations h-index g-index papers 66 66 66 25661 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	9.1	3,402
2	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	27.5	2,326
3	Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotechnology, 2015, 10, 313-318.	31.5	2,278
4	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	9.1	1,948
5	Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Materials, 2014, 13, 1128-1134.	27.5	1,463
6	Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015, 44, 2702-2712.	38.1	915
7	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	14.6	806
8	Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6197-6206.	21.0	769
9	The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Materials, 2016, 15, 1003-1009.	27.5	687
10	High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353, 1413-1416.	12.6	670
11	Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons. Journal of the American Chemical Society, 2013, 135, 7823-7826.	13.7	661
12	Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7, 45-49.	13.6	637
13	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018, 2, .	30.2	631
14	Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano, 2018, 12, 9635-9638.	14.6	537
15	Twoâ€Dimensional Hybrid Nanosheets of Tungsten Disulfide and Reduced Graphene Oxide as Catalysts for Enhanced Hydrogen Evolution. Angewandte Chemie - International Edition, 2013, 52, 13751-13754.	13.8	474
16	Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS ₂ Nanosheets toward the Evolution of Hydrogen. ACS Nano, 2019, 13, 6824-6834.	14.6	402
17	N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 13554-13557.	13.7	317
18	Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Letters, 2015, 15, 346-353.	9.1	284

#	Article	IF	Citations
19	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	27. 5	280
20	Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 2019, 18, 1112-1117.	27.5	196
21	Solutionâ€Processed MoS ₂ /Organolead Trihalide Perovskite Photodetectors. Advanced Materials, 2017, 29, 1603995.	21.0	187
22	Single atom is not alone: Metal–support interactions in single-atom catalysis. Materials Today, 2020, 40, 173-192.	14.2	174
23	Synthesis and Characterization of ReS ₂ and ReSe ₂ Layered Chalcogenide Single Crystals. Chemistry of Materials, 2016, 28, 3352-3359.	6.7	162
24	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	5.6	160
25	Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Materials, 2014, 2, .	5.1	155
26	Single Atomic Vacancy Catalysis. ACS Nano, 2019, 13, 9958-9964.	14.6	111
27	Enzymatic Biodegradability of Pristine and Functionalized Transition Metal Dichalcogenide MoS ₂ Nanosheets. Advanced Functional Materials, 2017, 27, 1605176.	14.9	109
28	High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 358-377.	12.0	100
29	Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates. Journal of Physical Chemistry C, 2016, 120, 23716-23725.	3.1	75
30	Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale, 2013, 5, 6552.	5.6	74
31	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	3.5	71
32	Ultrafast Charge Transfer and Enhanced Absorption in MoS ₂ –Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces. ACS Nano, 2016, 10, 9899-9908.	14.6	71
33	3.4% Solarâ€toâ€Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS ₂ Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	71
34	Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Materials for Renewable and Sustainable Energy, 2015, 4, 1.	3.6	68
35	Functional Polyelectrolyte Nanospaced MoS ₂ Multilayers for Enhanced Photoluminescence. Nano Letters, 2014, 14, 6456-6462.	9.1	65
36	Toward point-of-care management of chronic respiratory conditions: Electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsystems and Nanoengineering, 2017, 3, 17022.	7.0	60

#	Article	IF	Citations
37	Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. Nature Communications, 2021, 12, 7210.	12.8	60
38	Reduced Graphene Oxide Thin Films as Ultrabarriers for Organic Electronics. Advanced Energy Materials, 2014, 4, 1300986.	19.5	59
39	Stoichiometric control of single walled carbon nanotubes functionalization. Journal of Materials Chemistry, 2010, 20, 4385.	6.7	49
40	Yeast Cells-Derived Hollow Core/Shell Heteroatom-Doped Carbon Microparticles for Sustainable Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1978-1986.	8.0	49
41	Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sensors and Actuators B: Chemical, 2020, 305, 127438.	7.8	49
42	Simultaneous Electrochemical Exfoliation and Covalent Functionalization of MoS ₂ Membrane for Ion Sieving. Advanced Materials, 2022, 34, e2201416.	21.0	45
43	Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter, 2011, 7, 7998.	2.7	38
44	Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities. ACS Applied Materials & Electrocatalytic Activities. ACS Applied Materials & Electrocatalytic Activities.	8.0	36
45	Enhancing the CO ₂ -to-CO Conversion from 2D Silver Nanoprisms <i>via</i> Superstructure Assembly. ACS Nano, 2021, 15, 7682-7693.	14.6	35
46	Interfacial Interactions as an Electrochemical Tool To Understand Mo-Based Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 828-836.	11.2	34
47	Co ₃ O ₄ nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Advances, 2015, 5, 49385-49391.	3.6	32
48	Engineering Chemically Exfoliated Largeâ€Area Twoâ€Dimensional MoS ₂ Nanolayers with Porphyrins for Improved Light Harvesting. ChemPhysChem, 2016, 17, 2854-2862.	2.1	32
49	Rational Design of Hierarchical, Porous, Coâ€6upported, Nâ€Doped Carbon Architectures as Electrocatalyst for Oxygen Reduction. ChemSusChem, 2020, 13, 741-748.	6.8	32
50	Effects Of Structural Phase Transition On Thermoelectric Performance in Lithium-Intercalated Molybdenum Disulfide (Li _{<i>x</i>} MoS ₂). ACS Applied Materials & amp; Interfaces, 2019, 11, 12184-12189.	8.0	31
51	Catalytic Activity in Lithium-Treated Core–Shell MoO _{<i>x</i>} /MoS ₂ Nanowires. Journal of Physical Chemistry C, 2015, 119, 22908-22914.	3.1	30
52	Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction. Scientific Reports, 2020, 10, 22003.	3.3	24
53	Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon, 2011, 49, 170-175.	10.3	20
54	Reductive dismantling and functionalization of carbon nanohorns. Chemical Communications, 2015, 51, 5017-5019.	4.1	18

#	Article	IF	CITATIONS
55	2.6% cm ^{–2} Single-Pass CO ₂ -to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer. ACS Catalysis, 2021, 11, 12701-12711.	11.2	14
56	Chemistry and electronics of single layer MoS ₂ domains from photoelectron spectromicroscopy using laboratory excitation sources. Surface and Interface Analysis, 2016, 48, 465-469.	1.8	10
57	Disorder-driven two-dimensional quantum phase transitions in Li <i> _x </i> MoS ₂ . 2D Materials, 2020, 7, 035013.	4.4	7
58	Biomimetic electro-oxidation of alkyl sulfides from exfoliated molybdenum disulfide nanosheets. Journal of Materials Chemistry A, 2020, 8, 25053-25060.	10.3	6
59	Impact of polyelectrolytes on lysozyme properties in colloidal dispersions. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110419.	5.0	2
60	Probing Charge Transfer States in Polymer:Fullerene – MoS2 van der Waals Heterostructures. , 2018, , .		1
61	Charge Transfer and Enhanced Absorption in MoS2 - Organic Heterojunctions Using Plasmonic Metasurfaces. , 2017, , .		O