Elo Kibena-Põldsepp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3191720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous textured Fe-N-C electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells. Journal of Power Sources, 2022, 520, 230819.	7.8	46
2	Nitrogen and Phosphorus Dual-Doped Silicon Carbide-Derived Carbon/Carbon Nanotube Composite for the Anion-Exchange Membrane Fuel Cell Cathode. ACS Applied Energy Materials, 2022, 5, 2949-2958.	5.1	21
3	Polypyrrole and Polythiophene Modified Carbon Nanotubeâ€Based Cathode Catalysts for Anion Exchange Membrane Fuel Cell. ChemElectroChem, 2022, 9, .	3.4	9
4	Cobalt-Containing Nitrogen-Doped Carbon Materials Derived from Saccharides as Efficient Electrocatalysts for Oxygen Reduction Reaction. Catalysts, 2022, 12, 568.	3.5	3
5	Electroreduction of oxygen on iron- and cobalt-containing nitrogen-doped carbon catalysts prepared from the rapeseed press cake. Journal of Electroanalytical Chemistry, 2022, 920, 116599.	3.8	4
6	Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. Journal of Solid State Electrochemistry, 2021, 25, 57-71.	2.5	37
7	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	9.4	50
8	Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 4365-4377.	7.1	36
9	Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons. Renewable Energy, 2021, 167, 800-810.	8.9	50
10	Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 1920-1931.	11.2	85
11	Multi-purpose heterogeneous catalyst material from an amorphous cobalt metal–organic framework. Materials Advances, 2021, 2, 4009-4015.	5.4	6
12	Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell. Journal of Power Sources Advances, 2021, 8, 100052.	5.1	43
13	Ironâ€Containing Nitrogenâ€Đoped Carbon Nanomaterials Prepared via NaCl Template as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2288-2297.	3.4	7
14	Bimetal Phthalocyanineâ€Modified Carbon Nanotubeâ€Based Bifunctional Catalysts for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 2662-2670.	3.4	34
15	Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS Applied Materials & Interfaces, 2021, 13, 41507-41516.	8.0	65
16	Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 31275-31287.	7.1	30
17	Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochimica Acta, 2020, 334, 135575.	5.2	50
18	Impact of ball-milling of carbide-derived carbons on the generation of hydrogen peroxide via electroreduction of oxygen in alkaline media. Journal of Electroanalytical Chemistry, 2020, 878, 114690.	3.8	19

Elo Kibena-Põldsepp

#	Article	IF	CITATIONS
19	Cathode Catalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 5375-5384.	5.1	61
20	Electrospun Polyacrylonitrileâ€Đerived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem, 2020, 12, 4568-4581.	3.7	31
21	Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochimica Acta, 2020, 344, 136052.	5.2	23
22	Iron―and Nitrogenâ€Doped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	3.4	53
23	Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application. Applied Catalysis B: Environmental, 2020, 272, 119012.	20.2	72
24	Sulphur and nitrogen co-doped graphene-based electrocatalysts for oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2019, 109, 106603.	4.7	46
25	Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media. ACS Applied Energy Materials, 2019, 2, 7952-7962.	5.1	36
26	Polymer-derived Co/Ni–SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells. Catalysis Science and Technology, 2019, 9, 854-866.	4.1	30
27	Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene–acrylonitrile copolymer and carbon nanotube composite fibres. Journal of Materials Science, 2019, 54, 11618-11634.	3.7	28
28	Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 2019, 3, 3525-3537.	4.9	40
29	High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2019, 44, 12636-12648.	7.1	38
30	Iron and Nitrogen Coâ€doped Carbideâ€Đerived Carbon and Carbon Nanotube Composite Catalysts for Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1827-1836.	3.4	42
31	Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. Journal of Electroanalytical Chemistry, 2018, 817, 89-100.	3.8	11
32	Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochimica Acta, 2018, 267, 246-254.	5.2	25
33	Oxygen Reduction on Catalysts Prepared by Pyrolysis of Electrospun Styrene–Acrylonitrile Copolymer and Multi-walled Carbon Nanotube Composite Fibres. Catalysis Letters, 2018, 148, 1815-1826.	2.6	13
34	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	10.3	357
35	Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 2018, 43, 23027-23035.	7.1	58
36	Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling. Electrochemistry Communications, 2018, 93, 39-43.	4.7	47

#	Article	IF	CITATIONS
37	Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multiâ€walled Carbon Nanotube and Graphene Based Electrodes. Electroanalysis, 2017, 29, 548-558.	2.9	15
38	Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204, 394-402.	20.2	294
39	An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin. Catalysts, 2016, 6, 108.	3.5	50
40	Electrochemical properties of gold and glassy carbon electrodes electrografted with an anthraquinone diazonium compound using the rotating disc electrode method. RSC Advances, 2016, 6, 40982-40990.	3.6	10
41	Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts. Electrochimica Acta, 2015, 161, 195-204.	5.2	21
42	Electrochemical Behaviour of HOPG and CVDâ€Grown Graphene Electrodes Modified with Thick Anthraquinone Films by Diazonium Reduction. Electroanalysis, 2014, 26, 2619-2630.	2.9	29
43	Electrocatalysis of oxygen reduction on glassy carbon electrodes modified with anthraquinone moieties. Journal of Solid State Electrochemistry, 2014, 18, 1725-1733.	2.5	4
44	Surface and electrochemical characterisation of CVD grown graphene sheets. Electrochemistry Communications, 2013, 35, 26-29.	4.7	22
45	Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measurements in dairy wastewater. Environmental Science and Pollution Research, 2013, 20, 2492-2498.	5.3	6
46	Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. Journal of Electroanalytical Chemistry, 2013, 702, 8-14.	3.8	17
47	OH radical degradation of blocking aryl layers on glassy carbon and gold electrodes leads to film thinning on glassy carbon and pinhole films on gold. Electrochemistry Communications, 2013, 29, 33-36.	4.7	3
48	Electrochemical Modification of Gold Electrodes with Azobenzene Derivatives by Diazonium Reduction. ChemPhysChem, 2013, 14, 1043-1054.	2.1	13
49	A study of glassy carbon electrodes modified with azobenzene derivatives. Journal of Electroanalytical Chemistry, 2012, 686, 46-53.	3.8	15
50	Electrochemical behaviour of ABTS on aryl-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2011, 661, 343-350.	3.8	13
51	Semiâ€specific biosensors for measuring BOD in dairy wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 957-961.	3.2	8