Sureewan Sittijunda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 2008, 33, 5256-5265.	3.8	280
2	Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. International Journal of Hydrogen Energy, 2011, 36, 8687-8696.	3.8	109
3	Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. International Journal of Hydrogen Energy, 2011, 36, 14120-14133.	3.8	100
4	Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. International Journal of Hydrogen Energy, 2011, 36, 14227-14237.	3.8	83
5	Biochemical hydrogen and methane potential of sugarcane syrup using a two-stage anaerobic fermentation process. Industrial Crops and Products, 2016, 82, 88-99.	2.5	74
6	Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. International Journal of Hydrogen Energy, 2010, 35, 13435-13444.	3.8	69
7	Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. International Journal of Hydrogen Energy, 2013, 38, 6146-6153.	3.8	67
8	Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. International Journal of Hydrogen Energy, 2016, 41, 17884-17895.	3.8	61
9	Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers, 2021, 13, 963.	2.0	59
10	Enhanced bio-hydrogen production from sugarcane juice byÂimmobilized Clostridium butyricum on sugarcane bagasse. International Journal of Hydrogen Energy, 2012, 37, 15525-15532.	3.8	58
11	Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). International Journal of Hydrogen Energy, 2011, 36, 8765-8773.	3.8	55
12	Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment. International Journal of Hydrogen Energy, 2012, 37, 12219-12228.	3.8	54
13	Non-sterile bio-hydrogen fermentation from food waste in a continuous stirred tank reactor (CSTR): Performance and population analysis. International Journal of Hydrogen Energy, 2013, 38, 15630-15637.	3.8	54
14	Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electronic Journal of Biotechnology, 2015, 18, 221-230.	1.2	52
15	Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers, 2021, 13, 81.	2.0	52
16	Optimization of fermentative hydrogen production from hydrolysate of microwave assisted sulfuric acid pretreated oil palm trunk by hot spring enriched culture. International Journal of Hydrogen Energy, 2011, 36, 14204-14216.	3.8	51
17	Optimization of Key Factors Affecting Methane Production from Acidic Effluent Coming from the Sugarcane Juice Hydrogen Fermentation Process. Energies, 2012, 5, 4746-4757.	1.6	51
18	Performance and population analysis of hydrogen production from sugarcane juice by non-sterile continuous stirred tank reactor augmented with Clostridium butyricum. International Journal of Hydrogen Energy, 2011, 36, 8697-8703.	3.8	49

#	Article	IF	CITATIONS
19	Improvement in energy recovery from Chlorella sp.Âbiomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. International Journal of Hydrogen Energy, 2019, 44, 23899-23911.	3.8	49
20	Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. International Journal of Hydrogen Energy, 2013, 38, 6970-6979.	3.8	48
21	Valorization of microalgal biomass for biohydrogen generation: A review. Bioresource Technology, 2021, 322, 124533.	4.8	45
22	Optimization of biohydrogen production from sugarcane bagasse byÂmixed cultures using a statistical method. Sustainable Environment Research, 2016, 26, 235-242.	2.1	42
23	Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. International Journal of Hydrogen Energy, 2011, 36, 13928-13938.	3.8	41
24	Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1. International Journal of Hydrogen Energy, 2013, 38, 1813-1825.	3.8	39
25	Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 14694-14706.	3.8	39
26	Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International Journal of Hydrogen Energy, 2014, 39, 10870-10882.	3.8	37
27	Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. Bioresource Technology, 2021, 321, 124456.	4.8	37
28	Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH. Polymers, 2021, 13, 348.	2.0	37
29	Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation. International Journal of Hydrogen Energy, 2010, 35, 13427-13434.	3.8	36
30	Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers, 2021, 13, 1117.	2.0	34
31	Hydrogen production from sludge of poultry slaughterhouse wastewater treatment plant pretreated with microwave. International Journal of Hydrogen Energy, 2011, 36, 8751-8757.	3.8	32
32	Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. Fermentation, 2021, 7, 159.	1.4	30
33	Biohydrogen production from waste glycerol and sludge byÂanaerobic mixed cultures. International Journal of Hydrogen Energy, 2012, 37, 13789-13796.	3.8	29
34	Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. International Journal of Hydrogen Energy, 2017, 42, 9650-9659.	3.8	29
35	Co-Digestion of Napier Grass and Its Silage with Cow Dung for Methane Production. Energies, 2017, 10, 1654.	1.6	29
36	Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. International Journal of Hydrogen Energy, 2018, 43, 3605-3617.	3.8	29

#	Article	IF	CITATIONS
37	Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 2018, 43, 4284-4293.	3.8	29
38	Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. International Journal of Hydrogen Energy, 2012, 37, 15473-15482.	3.8	28
39	Ethanol production from glucose and xylose by immobilized Thermoanaerobacter pentosaceus at 70°C in an up-flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 2013, 143, 598-607.	4.8	28
40	Bio-Hydrogen Production from Pineapple Waste Extract by Anaerobic Mixed Cultures. Energies, 2013, 6, 2175-2190.	1.6	28
41	Simultaneous saccharification and fermentation of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung. International Journal of Hydrogen Energy, 2014, 39, 9028-9035.	3.8	28
42	Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions. Renewable Energy, 2020, 161, 361-372.	4.3	28
43	Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 2017, 42, 27558-27569.	3.8	27
44	Hydrogen from Photo Fermentation. Green Energy and Technology, 2018, , 221-317.	0.4	27
45	Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF). Energies, 2019, 12, 908.	1.6	27
46	Two-stage thermophilic bio-hydrogen and methane production from oil palm trunk hydrolysate using Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy, 2017, 42, 28222-28232.	3.8	26
47	Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. Energies, 2019, 12, 2529.	1.6	26
48	Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renewable Energy, 2016, 86, 1224-1231.	4.3	25
49	Sequential fermentation of hydrogen and methane from steam-exploded sugarcane bagasse hydrolysate. International Journal of Hydrogen Energy, 2018, 43, 9924-9934.	3.8	24
50	Optimization of Factors Affecting Acid Hydrolysis of Water Hyacinth Stem (Eichhornia Crassipes) for Bio-Hydrogen Production. Energy Procedia, 2015, 79, 833-837.	1.8	23
51	Rheological properties of microalgae slurry under subcritical conditions for hydrothermal hydrolysis systems. Algal Research, 2018, 33, 78-83.	2.4	22
52	Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process. Energies, 2018, 11, 47.	1.6	22
53	Co-digestion of oil palm trunk hydrolysate with slaughterhouse wastewater for thermophilic bio-hydrogen production by Thermoanaerobacterium thermosaccharolyticm KKU19. International Journal of Hydrogen Energy, 2014, 39, 6872-6880.	3.8	17
54	Trace metals supplementation enhanced microbiota and biohythane production by two-stage thermophilic fermentation. International Journal of Hydrogen Energy, 2019, 44, 3325-3338.	3.8	17

#	Article	IF	CITATIONS
55	Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures. Waste and Biomass Valorization, 2020, 11, 1873-1881.	1.8	17
56	Influences of size reduction, hydration, and thermal-assisted hydration pretreatment to increase the biogas production from Napier grass and Napier silage. Bioresource Technology, 2021, 331, 125034.	4.8	17
57	Two-Stage Anaerobic Codigestion of Crude Glycerol and Micro-Algal Biomass for Biohydrogen and Methane Production by Anaerobic Sludge Consortium. Fermentation, 2021, 7, 175.	1.4	15
58	Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLoS ONE, 2017, 12, e0171248.	1.1	15
59	Repeated-batch Fermentative for Bio-hydrogen Production from Cassava Starch Manufacturing Wastewater. Pakistan Journal of Biological Sciences, 2007, 10, 1782-1789.	0.2	15
60	One-step multi enzyme pretreatment and biohydrogen production from Chlorella sp. biomass. International Journal of Hydrogen Energy, 2021, 46, 39675-39687.	3.8	15
61	Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5. Biotechnology for Biofuels, 2015, 8, 190.	6.2	14
62	High Substitution Synthesis of Carboxymethyl Chitosan for Properties Improvement of Carboxymethyl Chitosan Films Depending on Particle Sizes. Molecules, 2021, 26, 6013.	1.7	14
63	Anaerobic co-digestion of biogas effluent and sugarcane filter cake for methane production. Biomass Conversion and Biorefinery, 2022, 12, 901-912.	2.9	13
64	Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production. Energies, 2018, 11, 3200.	1.6	12
65	Co-fermentation of 1,3-propanediol and 2,3-butanediol from crude glycerol derived from the biodiesel production process by newly isolated Enterobacter sp.: Optimization factors affecting. Bioresource Technology Reports, 2021, 13, 100616.	1.5	12
66	Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage. Renewable Energy, 2022, 181, 1237-1249.	4.3	12
67	Photo-hydrogen and lipid production from lactate, acetate, butyrate, and sugar manufacturing wastewater with an alternative nitrogen source by <i>Rhodobacter</i> sp <i>.</i> KKU-PS1. PeerJ, 2019, 7, e6653.	0.9	12
68	Effect of Monochloroacetic Acid on Properties of Carboxymethyl Bacterial Cellulose Powder and Film from Nata de Coco. Polymers, 2021, 13, 488.	2.0	11
69	New Vegetable Oils with Different Fatty Acids on Natural Rubber Composite Properties. Polymers, 2021, 13, 1108.	2.0	11
70	Photofermentaion and lipid accumulation by Rhodobacter sp. KKU-PS1 using malic acid as a substrate. International Journal of Hydrogen Energy, 2016, 41, 6259-6270.	3.8	10
71	INFLUENCE OF NITROGEN, ACETATE AND PROPIONATE ON HYDROGEN PRODUCTION FROM PINEAPPLE WASTE EXTRACT BY Rhodospirillum rubrum. Journal of Water and Environment Technology, 2005, 3, 93-117.	0.3	9
72	Enhanced simultaneous saccharification and fermentation of Napier grass and Napier silage for two stage bio-hydrogen and methane production using organosolv and hydrothermal. Materials Chemistry and Physics, 2021, 267, 124614.	2.0	9

#	Article	IF	CITATIONS
73	Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept. Biotechnology for Biofuels, 2021, 14, 197.	6.2	9
74	Bio-hydrogen and Methane Production from Lignocellulosic Materials. , 0, , .		9
75	Integrative Effects of Sonication and Particle Size on Biomethanation of Tropical Grass Pennisetum purpureum Using Superior Diverse Inocula Cultures. Energies, 2019, 12, 4226.	1.6	7
76	Morphology, Mechanical, and Water Barrier Properties of Carboxymethyl Rice Starch Films: Sodium Hydroxide Effect. Molecules, 2022, 27, 331.	1.7	7
77	Single and Combined Enzymatic Saccharification and Biohydrogen Production from Chlorella sp. Biomass. Bioenergy Research, 2021, 14, 940-953.	2.2	5
78	Enhancement of Thermophilic Biogas Production from Palm Oil Mill Effluent by pH Adjustment and Effluent Recycling. Processes, 2021, 9, 878.	1.3	5
79	Biohydrogen Productions from Hydrolysate of Water Hyacinth Stem (Eichhornia crassipes) Using Anaerobic Mixed Cultures. Sains Malaysiana, 2017, 46, 51-58.	0.3	4
80	Co-production of hydrogen and ethanol by Thermoanaerobacterium thermosaccharolyticum KKU-ED1 from alpha-cellulose and cellulose fraction of sugarcane bagasse. Bioresource Technology Reports, 2021, 15, 100759.	1.5	2
81	Hydroponic removal of carbofuran from contaminated water by local Thai aquatic plants. Journal of Biotechnology, 2010, 150, 562-562.	1.9	0
82	Optimum hydraulic retention time for dark-fermentative hydrogen production from co-digestion of vinasse and dried spent yeast. Journal of Applied Science, 2020, 19, 101-115.	0.0	0