
John Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells Journal of Clinical Investigation, 1991, 87, 602-608.	3.9	384
2	Hsp27 Inhibits Bax Activation and Apoptosis via a Phosphatidylinositol 3-Kinase-dependent Mechanism. Journal of Biological Chemistry, 2008, 283, 12305-12313.	1.6	182
3	Proton secretion by stimulated neutrophils. Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst Journal of Clinical Investigation, 1984, 74, 455-459.	3.9	125
4	Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. American Journal of Physiology - Renal Physiology, 2005, 288, F703-F713.	1.3	110
5	Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation. Journal of Biological Chemistry, 2006, 281, 7873-7880.	1.6	103
6	Inhibition of Ligand-independent ERK1/2 Activity in Kidney Proximal Tubular Cells Deprived of Soluble Survival Factors Up-regulates Akt and Prevents Apoptosis. Journal of Biological Chemistry, 2004, 279, 10962-10972.	1.6	102
7	Rat aortic smooth muscle cells in culture express kallikrein, kininogen, and bradykininase activity Journal of Clinical Investigation, 1990, 85, 597-600.	3.9	97
8	β-Catenin Promotes Survival of Renal Epithelial Cells by Inhibiting Bax. Journal of the American Society of Nephrology: JASN, 2009, 20, 1919-1928.	3.0	96
9	GSK3β Promotes Apoptosis after Renal Ischemic Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 284-294.	3.0	94
10	Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. American Journal of Physiology - Cell Physiology, 2002, 283, C917-C926.	2.1	87
11	HSP72 inhibits apoptosis-inducing factor release in ATP-depleted renal epithelial cells. American Journal of Physiology - Cell Physiology, 2003, 285, C1483-C1493.	2.1	78
12	Induction of heat shock protein 70 inhibits ischemic renal injury. Kidney International, 2011, 79, 861-870.	2.6	70
13	Chemical anoxia of tubular cells induces activation of c-Src and its translocation to the zonula adherens. American Journal of Physiology - Renal Physiology, 2003, 284, F488-F497.	1.3	66
14	Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress. Kidney International, 2011, 79, 1207-1216.	2.6	56
15	Role of Mitofusin 2 in the Renal Stress Response. PLoS ONE, 2012, 7, e31074.	1.1	53
16	Adenosine triphosphate depletion induces a rise in cytosolic free calcium in canine renal epithelial cells Journal of Clinical Investigation, 1988, 82, 1326-1332.	3.9	49
17	Carbonic Anhydrase Function and the Epithelial Organization of H+ Secretion in Turtle Urinary Bladder. Journal of Clinical Investigation, 1972, 51, 2653-2662.	3.9	47
18	hsp72 Inhibits Focal Adhesion Kinase Degradation in ATP-depleted Renal Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 18214-18220.	1.6	45

JOHN SCHWARTZ

#	Article	IF	CITATIONS
19	Vacuolar H+-ATPase B1 Subunit Mutations that Cause Inherited Distal Renal Tubular Acidosis Affect Proton Pump Assembly and Trafficking in Inner Medullary Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 1858-1866.	3.0	43
20	SNARE Proteins Regulate H+-ATPase Redistribution to the Apical Membrane in Rat Renal Inner Medullary Collecting Duct Cells. Journal of Biological Chemistry, 1999, 274, 26518-26522.	1.6	37
21	ATP Depletion Of Tubular Cells Causes Dissociation of the Zonula Adherens and Nuclear Translocation of β-Catenin and LEF-1. Journal of the American Society of Nephrology: JASN, 2002, 13, 1152-1161.	3.0	34
22	Proton secretion by the sodium/hydrogen ion antiporter in the human neutrophil Journal of Clinical Investigation, 1986, 77, 782-788.	3.9	32
23	Glucoseâ€dependent Insulinotropic Polypeptide (GIP) Stimulates Transepithelial Glucose Transport. Obesity, 2008, 16, 2412-2416.	1.5	28
24	Munc-18-2 regulates exocytosis of H+-ATPase in rat inner medullary collecting duct cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1366-C1374.	2.1	25
25	Hsp72 Interacts with Paxillin and Facilitates the Reassembly of Focal Adhesions during Recovery from ATP Depletion. Journal of Biological Chemistry, 2004, 279, 15472-15480.	1.6	24
26	Recognition of Apoptotic Cells by Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 1829-1840.	1.6	24
27	Nucleophosmin, a Critical Bax Cofactor in Ischemia-Induced Cell Death. Molecular and Cellular Biology, 2013, 33, 1916-1924.	1.1	24
28	Syntaxin Isoform Specificity in the Regulation of Renal H+-ATPase Exocytosis. Journal of Biological Chemistry, 2003, 278, 19791-19797.	1.6	21
29	Anion transport regulates intracellular pH in renal cortical tissue. Biochimica Et Biophysica Acta - Biomembranes, 1981, 648, 87-92.	1.4	20
30	Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of H+-ATPase to apical membrane of renal epithelial cells. American Journal of Physiology - Cell Physiology, 2005, 289, C665-C672.	2.1	16
31	A novel cellular survival factor – the B2 subunit of vacuolar H+-ATPase inhibits apoptosis. Cell Death and Differentiation, 2006, 13, 2109-2117.	5.0	16
32	Hsp27 inhibits sublethal, Src-mediated renal epithelial cell injury. American Journal of Physiology - Renal Physiology, 2009, 297, F760-F768.	1.3	15
33	Relationship between the Rate of H+ Transport and Pathways of Glucose Metabolism by Turtle Urinary Bladder. Journal of Clinical Investigation, 1978, 62, 532-538.	3.9	14
34	Effect of aldosterone and dexamethasone pretreatment on sodium transport in rat distal colon in vitro. Pflugers Archiv European Journal of Physiology, 1984, 400, 257-261.	1.3	13
35	Renal acid-base transport: The regulatory role of the inner medullary collecting duct. Kidney International, 1995, 47, 333-341.	2.6	11
36	Microscale sample preparation for PCR of C. difficile infected stool. Journal of Microbiological Methods, 2009, 78, 203-207.	0.7	11

JOHN SCHWARTZ

#	Article	IF	CITATIONS
37	Fatty acid-induced cytotoxicity: Differences in susceptibility between mdck cells and primary cultures of proximal tubular cells. Translational Research, 1997, 129, 260-265.	2.4	10
38	Mineralocorticoid Activity of 19-Nor-Corticosterone and 19-Nor-Progesterone in the Toad Bladder*. Endocrinology, 1984, 115, 1235-1238.	1.4	8
39	Recognition-dependent Signaling Events in Response to Apoptotic Targets Inhibit Epithelial Cell Viability by Multiple Mechanisms. Journal of Biological Chemistry, 2012, 287, 13761-13777.	1.6	6
40	Regulation of cGMP production by intracellular alkalinization in cultured rat inner medullary collecting duct cells. Biochemical and Biophysical Research Communications, 1990, 170, 860-866.	1.0	5
41	The cAMP Agonist Sp-cAMPS Stimulates Osmotic Water Transport across Rat Inner Medullary Collecting Duct Cells. Annals of the New York Academy of Sciences, 1993, 689, 606-608.	1.8	4
42	Adaptation of intercalated cells along the collecting duct to systemic acid/base changes. Kidney International, 2010, 78, 949-951.	2.6	3