Fengbo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190434/publications.pdf

Version: 2024-02-01

27	1,096	18	28
papers	citations	h-index	g-index
29	29	29	1878
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Applied Catalysis B: Environmental, 2017, 200, 192-199.	20.2	205
2	Selective hydrodeoxygenation of 5-hydroxy-2(5H)-furanone to \hat{I}^3 -butyrolactone over Pt/mesoporous solid acid bifunctional catalyst. RSC Advances, 2017, 7, 21145-21152.	3.6	13
3	Highly Stable and Recyclable Graphene Layers Protected Nickel–Cobalt Bimetallic Nanoparticles as Tunable Hydrotreating Catalysts for Phenylpropane Linkages in Lignin. Catalysis Letters, 2017, 147, 2877-2885.	2.6	14
4	Recyclable and Selective Nitroarene Hydrogenation Catalysts Based on Carbonâ€Coated Cobalt Oxide Nanoparticles. ChemCatChem, 2016, 8, 1132-1138.	3.7	39
5	Hydrogen from Water over Openlyâ€Structured Graphitic Carbon Nitride Polymer through Photocatalysis. ChemSusChem, 2016, 9, 478-484.	6.8	29
6	Cycloaddition of CO ₂ and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catalysis Science and Technology, 2016, 6, 2942-2948.	4.1	80
7	Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts. Applied Catalysis A: General, 2015, 500, 23-29.	4.3	109
8	Sustainable catalytic oxidation of alcohols over the interface between air and water. Green Chemistry, 2015, 17, 2325-2329.	9.0	22
9	Nanoporous photocatalysts developed through heat-driven stacking of graphitic carbon nitride nanosheets. RSC Advances, 2015, 5, 14027-14033.	3.6	29
10	Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 2015, 165, 547-554.	20.2	21
11	Porous and low-defected graphitic carbon nitride nanotubes for efficient hydrogen evolution under visible light irradiation. RSC Advances, 2015, 5, 102700-102706.	3.6	46
12	Pt nanoparticles over TiO2–ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol. Applied Catalysis A: General, 2014, 478, 252-258.	4.3	41
13	Integrated Catalytic Process to Directly Convert Furfural to Levulinate Ester with High Selectivity. ChemSusChem, 2014, 7, 202-209.	6.8	62
14	Nanosheets of graphitic carbon nitride as metal-free environmental photocatalysts. Catalysis Science and Technology, 2014, 4, 4258-4264.	4.1	35
15	Stability or flexibility: Metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Applied Catalysis A: General, 2014, 481, 54-63.	4.3	14
16	Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Applied Catalysis B: Environmental, 2013, 136-137, 269-277.	20.2	168
17	Sustainable catalysts for methanol carbonylation. Green Chemistry, 2013, 15, 1600.	9.0	25
18	A Sustainable Process for Catalytic Oxidative Bromination with Molecular Oxygen. ChemSusChem, 2013, 6, 1337-1340.	6.8	20

FENGBO LI

#	Article	IF	CITATION
19	Self-assembled nanostructures of Ag6[PV3Mo9O40] with N-donor ligands and their catalytic activity. RSC Advances, 2012, 2, 11449.	3.6	9
20	Highly Stable, Recyclable Copper Nanoparticles as Catalysts for the Formation of CN Bonds. ChemCatChem, 2012, 4, 1741-1745.	3.7	12
21	Efficient and recyclable catalysts for selective oxidation of polyols in H2O with molecular oxygen. Green Chemistry, 2011, 13, 3414.	9.0	19
22	Nitrogen-rich copolymeric microsheets supporting copper nanoparticles for catalyzing arylation of N-heterocycles. Applied Catalysis A: General, 2011, 403, 104-111.	4.3	29
23	Preparation and structure of calcium peroxideâ€templated porous calcium carbonate crystals. Crystal Research and Technology, 2011, 46, 664-668.	1.3	5
24	Structural evolution of barite particles using a polymer with double hydrophilic ionic moieties as additive. Crystal Research and Technology, 2011, 46, 1155-1160.	1.3	1
25	Hydrated Dibromodioxomolybdenum(VI) Supported on Zn-MCM-48 for Facile Oxidation of Methane. Angewandte Chemie - International Edition, 2006, 45, 6541-6544.	13.8	14
26	Low temperature catalytic conversion of methane to methanol by barium sulfate nanotubes supporting sulfates: Pt(SO4)2, HgSO4, Ce(SO4)2 and Pb(SO4)2. Chemical Communications, 2005, , 2238.	4.1	23
27	A Novel Type of Nanoporous Carbon Material Supporting High Dispersion of Rhodium Nanoparticles. Catalysis Letters, 2003, 89, 115-119.	2.6	8