Chuanen Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/319038/publications.pdf Version: 2024-02-01

CHUANEN 7HOU

#	Article	IF	CITATIONS
1	Integrated regulation of periclinal cell division by transcriptional module of BZR1â€5HR in <i>Arabidopsis</i> roots. New Phytologist, 2022, 233, 795-808.	7.3	13
2	Developmental Analysis of Compound Leaf Development in Arachis hypogaea. Frontiers in Plant Science, 2022, 13, 749809.	3.6	1
3	The Conserved and Specific Roles of the LUX ARRHYTHMO in Circadian Clock and Nodulation. International Journal of Molecular Sciences, 2022, 23, 3473.	4.1	5
4	Functional characterization of PETIOLULE‣IKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. Plant Biotechnology Journal, 2021, 19, 351-364.	8.3	13
5	Interaction between the MtDELLA–MtGAF1 Complex and MtARF3 Mediates Transcriptional Control of MtGA3ox1 to Elaborate Leaf Margin Formation in <i>Medicago truncatula</i> . Plant and Cell Physiology, 2021, 62, 321-333.	3.1	8
6	Developmental Analysis of the GATA Factor HANABA TARANU Mutants in Medicago truncatula Reveals Their Roles in Nodule Formation. Frontiers in Plant Science, 2021, 12, 616776.	3.6	4
7	From genes to networks: The genetic control of leaf development. Journal of Integrative Plant Biology, 2021, 63, 1181-1196.	8.5	36
8	LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene <i>SMOOTH LEAF MARGIN1</i> . Plant Physiology, 2021, 187, 218-235.	4.8	13
9	Brassinosteroid homeostasis is critical for the functionality of the <i>Medicago truncatula</i> pulvinus. Plant Physiology, 2021, 185, 1745-1763.	4.8	8
10	MtPIN1 and MtPIN3 Play Dual Roles in Regulation of Shade Avoidance Response under Different Environments in Medicago truncatula. International Journal of Molecular Sciences, 2020, 21, 8742.	4.1	3
11	Phospho-Mutant Activity Assays Provide Evidence for the Negative Regulation of Transcriptional Regulator PRE1 by Phosphorylation. International Journal of Molecular Sciences, 2020, 21, 9183.	4.1	1
12	The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2020, 62, 1880-1895.	8.5	26
13	Systematic Analysis of Gibberellin Pathway Components in Medicago truncatula Reveals the Potential Application of Gibberellin in Biomass Improvement. International Journal of Molecular Sciences, 2020, 21, 7180.	4.1	10
14	Efficient Generation of CRISPR/Cas9-Mediated Homozygous/Biallelic Medicago truncatula Mutants Using a Hairy Root System. Frontiers in Plant Science, 2020, 11, 294.	3.6	25
15	Genome-wide characterization of SPL family in Medicago truncatula reveals the novel roles of miR156/SPL module in spiky pod development. BMC Genomics, 2019, 20, 552.	2.8	21
16	HEADLESS Regulates Auxin Response and Compound Leaf Morphogenesis in Medicago truncatula. Frontiers in Plant Science, 2019, 10, 1024.	3.6	19
17	Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula. Plant Journal, 2019, 100, 562-571.	5.7	20
18	MtBZR1 Plays an Important Role in Nodule Development in Medicago truncatula. International Journal of Molecular Sciences, 2019, 20, 2941.	4.1	7

CHUANEN ZHOU

#	Article	IF	CITATIONS
19	<i>AGAMOUS-LIKE FLOWER</i> regulates flower and compound leaf development through different regulatory mechanisms in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2019, 14, 1612683.	2.4	4
20	<i>AGLF</i> provides C-function in floral organ identity through transcriptional regulation of <i>AGAMOUS</i> in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5176-5181.	7.1	20
21	Genome-Wide Identification of TCP Family Transcription Factors in Medicago truncatula Reveals Significant Roles of miR319-Targeted TCPs in Nodule Development. Frontiers in Plant Science, 2018, 9, 774.	3.6	29
22	A class II KNOX gene, <i>KNOX4</i> , controls seed physical dormancy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6997-7002.	7.1	55
23	Alfalfa (Medicago sativa L.). Methods in Molecular Biology, 2015, 1223, 213-221.	0.9	27
24	STM/BP-Like KNOXI Is Uncoupled from ARP in the Regulation of Compound Leaf Development in <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2014, 26, 1464-1479.	6.6	41
25	The <i>Trans</i> -Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an <i>argonaute7</i> / <i>lobed leaflet1</i> Mutant in <i>Medicago</i> Â <i>truncatula</i> Â Â. Plant Cell, 2014. 25. 4845-4862.	6.6	64
26	Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2013, 162, 107-115.	4.8	92
27	Identification and characterization of <i>petioluleâ€Âlike pulvinus</i> mutants with abolished nyctinastic leaf movement in the model legume <i>Medicago truncatula</i> . New Phytologist, 2012, 196, 92-100.	7.3	38
28	Construction of Whole Genome Radiation Hybrid Panels and Map of Chromosome 5A of Wheat Using Asymmetric Somatic Hybridization. PLoS ONE, 2012, 7, e40214.	2.5	5
29	Overexpression of miR156 in switchgrass (<i>Panicum virgatum</i> L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 2012, 10, 443-452.	8.3	293
30	Developmental Analysis of a <i>Medicago truncatula smooth leaf margin1</i> Mutant Reveals Context-Dependent Effects on Compound Leaf Development Â. Plant Cell, 2011, 23, 2106-2124.	6.6	82
31	From Model to Crop: Functional Analysis of a <i>STAY-GREEN</i> Gene in the Model Legume <i>Medicago truncatula</i> and Effective Use of the Gene for Alfalfa Improvement Â. Plant Physiology, 2011, 157, 1483-1496.	4.8	124
32	Potential but limited redundant roles of MtPIN4, MtPIN5 and MtPIN10/SLM1 in the development of <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2011, 6, 1834-1836.	2.4	8
33	Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Reports, 2009, 28, 627-638.	5.6	17
34	Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana. Plant Cell Reports, 2007, 26, 1233-1241.	5.6	14
35	Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd and Triticum aestivum L.: potential application to the study of the wheat genome. Planta, 2006, 223, 714-724.	3.2	15
36	Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. Plant Cell Reports, 2004, 23, 461-467.	5.6	10