Paola M MinÃ³prio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Irreversible inhibitors of the proline racemase unveil innovative mechanism of action as antibacterial agents against <i>Clostridioides difficile</i> . Chemical Biology and Drug Design, 2022, 99, 513-526.	1.5	2
2	An international, interlaboratory ring trial confirms the feasibility of an extraction-less "direct― RT-qPCR method for reliable detection of SARS-CoV-2 RNA in clinical samples. PLoS ONE, 2022, 17, e0261853.	1.1	0
3	Prodrugs as new therapies against Chagas disease: in vivo synergy between Trypanosoma cruzi proline racemase inhibitors and benznidazole. Journal of Global Antimicrobial Resistance, 2022, 28, 84-89.	0.9	8
4	In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19. International Journal of Infectious Diseases, 2021, 105, 579-587.	1.5	25
5	A comparative in silico linear B-cell epitope prediction and characterization for South American and African Trypanosoma vivax strains. Genomics, 2019, 111, 407-417.	1.3	16
6	Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography. PLoS Neglected Tropical Diseases, 2018, 12, e0006853.	1.3	7
7	Unveiling Cerebral Leishmaniasis: parasites and brain inflammation in Leishmania donovani infected mice. Scientific Reports, 2017, 7, 8454.	1.6	16
8	Imaging visceral leishmaniasis in real time with golden hamster model: Monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host. Parasitology International, 2017, 66, 933-939.	0.6	20
9	New insights into experimental visceral leishmaniasis: Real-time in vivo imaging of Leishmania donovani virulence. PLoS Neglected Tropical Diseases, 2017, 11, e0005924.	1.3	25
10	Phylogenetic and syntenic data support a single horizontal transference to a Trypanosoma ancestor of a prokaryotic proline racemase implicated in parasite evasion from host defences. Parasites and Vectors, 2015, 8, 222.	1.0	25
11	Global Gene Expression Profiling through the Complete Life Cycle of Trypanosoma vivax. PLoS Neglected Tropical Diseases, 2015, 9, e0003975.	1.3	31
12	In vivo imaging of trypanosomes for a better assessment of host–parasite relationships and drug efficacy. Parasitology International, 2014, 63, 260-268.	0.6	20
13	Combined Approaches for Drug Design Points the Way to Novel Proline Racemase Inhibitor Candidates to Fight Chagas' Disease. PLoS ONE, 2013, 8, e60955.	1.1	17
14	Non-Invasive In Vivo Study of the Trypanosoma vivax Infectious Process Consolidates the Brain Commitment in Late Infections. PLoS Neglected Tropical Diseases, 2013, 7, e1976.	1.3	30
15	Drug Discovery Targeting Amino Acid Racemases. Chemical Reviews, 2011, 111, 6919-6946.	23.0	97
16	Genetic Engineering of Trypanosoma (Dutonella) vivax and In Vitro Differentiation under Axenic Conditions. PLoS Neglected Tropical Diseases, 2011, 5, e1461.	1.3	30
17	Intravenous immunoglobulin increases survival time in the acute phase of experimental Chagas disease. Parasite Immunology, 2010, 32, 464-469.	0.7	7
18	Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions. PLoS Neglected Tropical Diseases, 2010, 4, e793.	1.3	25

#	Article	IF	CITATIONS
19	Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters. PLoS Neglected Tropical Diseases, 2010, 4, e792.	1.3	42
20	Inhibition of Trypanosoma cruzi proline racemase affects host-parasite interactions and the outcome of in vitro infection. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 1055-1062.	0.8	18
21	Proline racemases: insights into Trypanosoma cruzi peptides containing D-proline. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 295-300.	0.8	17
22	Proline racemases are conserved mitogens: Characterization of a Trypanosoma vivax proline racemase. Molecular and Biochemical Parasitology, 2009, 165, 170-179.	0.5	25
23	Molecular and Structural Discrimination of Proline Racemase and Hydroxyproline-2-Epimerase from Nosocomial and Bacterial Pathogens. PLoS ONE, 2007, 2, e885.	1.1	43
24	Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1705-1710.	3.3	92
25	Trypanosoma cruzi proline racemases are involved in parasite differentiation and infectivity. Molecular Microbiology, 2005, 58, 46-60.	1.2	52
26	Biochemical Characterization of Proline Racemases from the Human Protozoan Parasite Trypanosoma cruzi and Definition of Putative Protein Signatures. Journal of Biological Chemistry, 2003, 278, 15484-15494.	1.6	58
27	Increased Trypanosoma cruzi Invasion and Heart Fibrosis Associated with High Transforming Growth Factor β Levels in Mice Deficient in α2-Macroglobulin. Infection and Immunity, 2002, 70, 5115-5123.	1.0	43
28	Significant association between the skewed natural antibody repertoire ofXid mice and resistance to Trypanosoma cruzi infection. European Journal of Immunology, 2001, 31, 634-645.	1.6	26
29	Parasite polyclonal activators: new targets for vaccination approaches?. International Journal for Parasitology, 2001, 31, 588-591.	1.3	76
30	Changes in the cytokine profile of lupus-prone mice (NZB/NZW)F1 induced by Plasmodium chabaudi and their implications in the reversal of clinical symptoms. Clinical and Experimental Immunology, 2000, 119, 333-339.	1.1	15
31	A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nature Medicine, 2000, 6, 890-897.	15.2	138
32	Partial Protection of Mice against Trypanosoma cruzi after Immunizing with the TcY 72 Antigenic Preparation. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 167-172.	0.8	4
33	X-linked immunodeficiency affects the outcome of Schistosoma mansoni infection in the murine model. Parasite Immunology, 1999, 21, 89.	0.7	35
34	A Trypanosoma cruzi Alkaline Antigen Induces Polyclonal B-Cell Activation of Normal Murine Spleen Cells by T-Cell-Independent, BCR-Directed Stimulation. Scandinavian Journal of Immunology, 1999, 50, 159-166.	1.3	14
35	<i>Theileria annulata</i> in CD5 ⁺ Macrophages and B1 B Cells. Infection and Immunity, 1999, 67, 6678-6682.	1.0	44
36	A 24 000 MWTrypanosoma cruziantigen is a Bâ€cell activator. Immunology, 1998, 94, 189-196.	2.0	39

Paola M MinÃ³prio

#	Article	IF	CITATIONS
37	The influence of T cell subsets on Trypanosoma cruzi multiplication in different organs. Immunology Letters, 1996, 49, 163-168.	1.1	17
38	Murine Acariasis. II. Immunological Dysfunction and Evidence for Chronic Activation of Thâ€⊋ Lymphocytes. Scandinavian Journal of Immunology, 1996, 43, 604-612.	1.3	32
39	Intranasal Inoculation of Bordetella Bronchiseptica in Mice Induces Long‣asting Antibody and Tâ€Cell Mediated Immune Responses. Scandinavian Journal of Immunology, 1996, 43, 181-192.	1.3	40
40	Igâ€isotype Patterns of Primary and Secondary B Cell Responses to Plasmodium Chabaudi Chabaudi Correlate with IFNâ€i³ and ILâ€4 Cytokine Production and with CD45RB Expression by CD4 + Spleen Cells. Scandinavian Journal of Immunology, 1996, 43, 263-270.	1.3	32
41	Vβ6-bearing T cells are involved in resistance to Trypanosoma cruzi infection in XID mice. International Immunology, 1996, 8, 1213-1219.	1.8	12
42	In Vivo Evidence for a Non-T Cell Origin of Interleukin-5. Scandinavian Journal of Immunology, 1995, 41, 288-292.	1.3	7
43	Skewed VÎ ² TCR repertoire of CD8+ T cells in murine Trypanosoma cruzi infection. International Immunology, 1994, 6, 387-392.	1.8	23
44	Endogenous IL-10 and IFN-gamma Production Controls Thymic Cell Proliferation in Mice Acutely Infected by Trypanosoma cruzi. Scandinavian Journal of Immunology, 1994, 39, 51-58.	1.3	27
45	Murine AIDS protects mice against experimental cerebral malaria: down-regulation by interleukin 10 of a T-helper type 1 CD4+ cell-mediated pathology Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8097-8101.	3.3	57
46	CD5 B Cells. Annals of the New York Academy of Sciences, 1992, 651, 557-563.	1.8	9
47	V-region-related and -unrelated immunosupression accompanying infections. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 35-41.	0.8	6
48	ls TNFα involved in early susceptibility of Trypanosoma cruzi-infected C3H/He mice?. Research in Immunology, 1991, 142, 117-122.	0.9	47
49	Chagas' disease: CD5 B-cell-dependent Th2 pathology?. Research in Immunology, 1991, 142, 137-140.	0.9	19
50	Xidimmunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas' disease. International Immunology, 1991, 3, 427-433.	1.8	72
51	Preferential expansion of Ly-1 B and CD4â^' CD8â^' T cells in the polyclonal lymphocyte responses to murine T.cruzi infection. International Immunology, 1989, 1, 176-184.	1.8	64
52	Immunobiology of Murine T Cruzi Infection: The Predominance of Parasite-nonspecific Responses and the Activation of TCRIT Cells. Immunological Reviews, 1989, 112, 183-207.	2.8	166
53	Susceptible mice present higher macrophage activation than resistant mice during infections with myotropic strains of Trypanosoma cruzi. Parasite Immunology, 1989, 11, 385-395.	0.7	45
54	Most B Cells in Acute Trypanosoma cruzi Infection Lack Parasite Specificity. Scandinavian Journal of Immunology, 1988, 28, 553-561.	1.3	93

#	Article	IF	CITATIONS
55	Depletion of L3t4+ T lymphocytes during acute Trypanosoma cruzi infection abolish macrophage and B lymphocyte activation but not tissue inflammatory reaction. Memorias Do Instituto Oswaldo Cruz, 1988, 83, 527-538.	0.8	8
56	Polyclonal Lymphocyte Responses to Murine Trypanosoma cruzi Infection Scandinavian Journal of Immunology, 1986, 24, 661-668.	1.3	147
57	In vitro study of immunological events in human and experimental schistosomiasis: relationships between cytotoxic antibodies and circulating Schistosoma antigens. Parasite Immunology, 1980, 2, 223-235.	0.7	9