Thierry Brun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189783/publications.pdf

Version: 2024-02-01

331259 552369 1,897 29 21 26 h-index citations g-index papers 30 30 30 2834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabolic Fate of Glucose in Purified Islet Cells. Journal of Biological Chemistry, 1997, 272, 18572-18579.	1.6	380
2	Mitochondrial dysfunction in pancreatic \hat{l}^2 cells. Trends in Endocrinology and Metabolism, 2012, 23, 477-487.	3.1	198
3	Agenesis of Human Pancreas due to Decreased Half-Life of Insulin Promoter Factor 1. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4398-4406.	1.8	158
4	Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E \hat{l}^2 -Cells and Human Islets through a SIRT1-dependent Mechanism. Journal of Biological Chemistry, 2011, 286, 6049-6060.	1.6	145
5	The diabetes-linked transcription factor PAX4 promotes \hat{l}^2 -cell proliferation and survival in rat and human islets. Journal of Cell Biology, 2004, 167, 1123-1135.	2.3	133
6	NADPH Oxidase NOX2 Defines a New Antagonistic Role for Reactive Oxygen Species and cAMP/PKA in the Regulation of Insulin Secretion. Diabetes, 2012, 61, 2842-2850.	0.3	100
7	Increased Fat Intake during Lactation Modifies Hypothalamic-Pituitary-Adrenal Responsiveness in Developing Rat Pups: A Possible Role for Leptin*. Endocrinology, 1998, 139, 3704-3711.	1.4	91
8	Transient Oxidative Stress Damages Mitochondrial Machinery Inducing Persistent \hat{l}^2 -Cell Dysfunction. Journal of Biological Chemistry, 2009, 284, 23602-23612.	1.6	77
9	Oligonucleotide Microarray Analysis Reveals PDX1 as an Essential Regulator of Mitochondrial Metabolism in Rat Islets. Journal of Biological Chemistry, 2004, 279, 31121-31130.	1.6	65
10	Role of Mitochondria in \hat{l}^2 -cell Function and Dysfunction. Advances in Experimental Medicine and Biology, 2010, 654, 193-216.	0.8	58
11	A focus on the role of Pax4 in mature pancreatic islet \hat{I}^2 -cell expansion and survival in health and disease. Journal of Molecular Endocrinology, 2008, 40, 37-45.	1.1	56
12	The diabetes-linked transcription factor Pax4 is expressed in human pancreatic islets and is activated by mitogens and GLP-1. Human Molecular Genetics, 2007, 17, 478-489.	1.4	51
13	Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Molecular Biology, 2007, 8, 54.	3.0	45
14	In Vivo Conditional Pax4 Overexpression in Mature Islet \hat{l}^2 -Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes, 2011, 60, 1705-1715.	0.3	45
15	PAX4 Defines an Expandable \hat{I}^2 -Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 2015, 5, 15672.	1.6	38
16	The Zinc Finger-Containing Transcription Factor Gata-4 Is Expressed in the Developing Endocrine Pancreas and Activates Glucagon Gene Expression. Molecular Endocrinology, 2005, 19, 759-770.	3.7	36
17	The SMN genes are subject to transcriptional regulation during cellular differentiation. Gene, 2001, 279, 109-117.	1.0	35
18	Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2540-2549.	1.9	33

#	Article	IF	Citations
19	Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets. Human Molecular Genetics, 2015, 24, 5270-5284.	1.4	31
20	Chronic fructose renders pancreatic \hat{l}^2 -cells hyper-responsive to glucose-stimulated insulin secretion through extracellular ATP signaling. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E25-E41.	1.8	28
21	Changes in Mitochondrial Carriers Exhibit Stress-Specific Signatures in INS-1EÎ ² -Cells Exposed to Glucose Versus Fatty Acids. PLoS ONE, 2013, 8, e82364.	1.1	21
22	AMPK Profiling in Rodent and Human Pancreatic Beta-Cells under Nutrient-Rich Metabolic Stress. International Journal of Molecular Sciences, 2020, 21, 3982.	1.8	18
23	Palmitate and oleate modify membrane fluidity and kinase activities of INS-1E β-cells alongside altered metabolism-secretion coupling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118619.	1.9	17
24	Complete nucleotide sequence, genomic organization, and promoter analysis of the murine survival motor neuron gene (Smn). Mammalian Genome, 1999, 10, 638-641.	1.0	15
25	Glucolipotoxicity promotes the capacity of the glycerolipid/NEFA cycle supporting the secretory response of pancreatic beta cells. Diabetologia, 2022, 65, 705-720.	2.9	13
26	Mitochondrial Carriers Regulating Insulin Secretion Profiled in Human Islets upon Metabolic Stress. Biomolecules, 2020, 10, 1543.	1.8	9
27	Role of Mitochondria in \hat{I}^2 -Cell Function and Dysfunction. , 2015, , 633-657.		1
28	Role of Mitochondria in \hat{I}^2 -Cell Function and Dysfunction. , 2013, , 1-25.		0
29	Role of Mitochondria in \hat{I}^2 -Cell Function and Dysfunction. , 2014, , 1-24.		O