Haval Shirwan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adjuvants for improving cancer vaccines. , 2022, , 209-226.		Ο
2	FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Science Advances, 2022, 8, eabm9881.	4.7	32
3	A modified surgical procedure using minimally invasive ileocolic vein perfusion in a mouse intrahepatic islet transplant model. STAR Protocols, 2022, 3, 101416.	0.5	2
4	A hydrogel platform for coâ€delivery of immunomodulatory proteins for pancreatic islet allografts. Journal of Biomedical Materials Research - Part A, 2022, 110, 1728-1737.	2.1	6
5	Meeting Report: Translational Advances in Cancer Prevention Agent Development Meeting. Journal of Cancer Prevention, 2021, 26, 71-82.	0.8	4
6	Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege. American Journal of Transplantation, 2020, 20, 1285-1295.	2.6	21
7	ISLETS ENGINEERED WITH CD47 INNATE IMMUNE CHECKPOINT PROTEIN SHOW ENHANCED ENGRAFTMENT FOLLOWING INTRAPORTAL TRANSPLANTATION BY MITIGATING INSTANT BLOOD MEDIATED INFLAMMATORY REACTION. Transplantation, 2020, 104, S11-S11.	0.5	Ο
8	Immunotherapy via PD-L1–presenting biomaterials leads to long-term islet graft survival. Science Advances, 2020, 6, eaba5573.	4.7	54
9	IMMUNOMODULATION WITH SA-PDL1 PROTEIN ON PANCREATIC ISLETS PROMOTES INDEFINITE GRAFT SURVIVAL IN ALLOGENEIC RECIPIENTS. Transplantation, 2020, 104, S152-S152.	0.5	Ο
10	Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation. American Journal of Transplantation, 2020, 20, 2703-2714.	2.6	16
11	Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression. Journal of Immunology, 2020, 204, 2840-2851.	0.4	26
12	Abstract 4516: SA-4-1BBL as a novel agonist of CD137 has immunoprevention efficacy against various tumor types. , 2020, , .		0
13	Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS Nano, 2019, 13, 10555-10565.	7.3	78
14	Robust Th1 cellular and humoral responses generated by the Yersinia pestis rF1-V subunit vaccine formulated to contain an agonist of the CD137 pathway do not translate into increased protection against pneumonic plague. Vaccine, 2019, 37, 5708-5716.	1.7	17
15	A DNA Vaccine Encoding SA-4-1BBL Fused to HPV-16 E7 Antigen Has Prophylactic and Therapeutic Efficacy in a Cervical Cancer Mouse Model. Cancers, 2019, 11, 96.	1.7	17
16	A Novel Form of 4-1BBL Prevents Cancer Development via Nonspecific Activation of CD4+ T and Natural Killer Cells. Cancer Research, 2019, 79, 783-794.	0.4	14
17	Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials, 2019, 192, 271-281.	5.7	30
18	Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. American Journal of Transplantation, 2019, 19, 1315-1327.	2.6	48

#	Article	IF	CITATIONS
19	Abstract 4145: A novel form of 4-1BB agonist shows robust immune protection against various tumor types through CD4 ⁺ memory-like T and NK cell axis. , 2019, , .		Ο
20	Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines, 2018, 17, 207-215.	2.0	111
21	Adenovirus Lacking <i>E1b</i> Efficiently Induces Cytopathic Effect in HPV-16-Positive Murine Cancer Cells via Virus Replication and Apoptosis. Cancer Investigation, 2018, 36, 19-27.	0.6	Ο
22	Temozolomide renders murine cancer cells susceptible to oncolytic adenovirus replication and oncolysis. Cancer Biology and Therapy, 2018, 19, 188-197.	1.5	3
23	Synthetic Immunomodulatory Biomaterials to Improve Islet Graft Survival. Transplantation, 2018, 102, S230.	0.5	1
24	CD47 Overcomes Early Loss of Pancreatic Islet Grafts Transplanted Intraportally. Transplantation, 2018, 102, S47.	0.5	3
25	Immunomodulation with SA-FasL-Engineered Microgels Achieves Long-Term Survival of Allogeneic Islet Grafts. Transplantation, 2018, 102, S291.	0.5	0
26	The Transient Display of a Chimeric PD-L1 Protein on Pancreatic Islets Promotes Indefinite Survival in Allogeneic Recipients. Transplantation, 2018, 102, S455.	0.5	2
27	Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Materials, 2018, 17, 732-739.	13.3	124
28	Induction of tolerance to allogeneic islet grafts using an immunomodulatory biomaterial. Journal of Cell Science & Therapy, 2018, 09, .	0.3	0
29	Mechanisms of Tolerance Induction by Hematopoietic Chimerism: The Immune Perspective. Stem Cells Translational Medicine, 2017, 6, 700-712.	1.6	13
30	Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017, 3, e1700184.	4.7	130
31	Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 2017, 113, 170-175.	5.7	72
32	Fas/Fas-Ligand Interaction As a Mechanism of Immune Homeostasis and β-Cell Cytotoxicity: Enforcement Rather Than Neutralization for Treatment of Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 342.	2.2	4
33	Targeted deletion of pathogenic T effector cells as a robust means of allograft tolerance. Journal of Cell Science & Therapy, 2017, 08, .	0.3	0
34	Novel technologies to engineer graft for tolerance induction. Current Opinion in Organ Transplantation, 2016, 21, 74-80.	0.8	5
35	SA-4-1BBL/MPL as a novel immune adjuvant platform to combat cancer. Oncolmmunology, 2016, 5, e1064580.	2.1	8
36	4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression. PLoS ONE, 2016, 11, e0153088.	1.1	23

#	Article	IF	CITATIONS
37	CD8+ T effector targeted elimination of regulatory tumor stroma cells for improved immunotherapy. Translational Cancer Research, 2016, 5, 194-195.	0.4	0
38	SA-4-1BBL and Monophosphoryl Lipid A Constitute an Efficacious Combination Adjuvant for Cancer Vaccines. Cancer Research, 2014, 74, 6441-6451.	0.4	35
39	SA-4-1BBL as a novel adjuvant for the development of therapeutic cancer vaccines. Expert Review of Vaccines, 2014, 13, 387-398.	2.0	15
40	Fragmented Sleep Accelerates Tumor Growth and Progression through Recruitment of Tumor-Associated Macrophages and TLR4 Signaling. Cancer Research, 2014, 74, 1329-1337.	0.4	157
41	Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant. Vaccine, 2014, 32, 5035-5040.	1.7	23
42	Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. , 2014, , 203-271.		3
43	SA-4-1BBL: A Novel Form of the 4-1BB Costimulatory Ligand as an Adjuvant Platform for the Development of Subunit Cancer Vaccines. , 2014, , 347-386.		0
44	The Direct Display of Costimulatory Proteins on Tumor Cells as a Means of Vaccination for Cancer Immunotherapy. Methods in Molecular Biology, 2014, 1139, 269-285.	0.4	0
45	Immunomodulation with donor regulatory T cells armed with Fas-ligand alleviates graft-versus-host disease. Experimental Hematology, 2013, 41, 903-911.	0.2	15
46	Immunomodulation With SA-FasL Protein as an Effective Means of Preventing Islet Allograft Rejection in Chemically Diabetic NOD Mice. Transplantation Proceedings, 2013, 45, 1889-1891.	0.3	4
47	Co-stimulatory tumor necrosis factor ligands as adjuvants for the development of subunit-based anticancer vaccines. Oncolmmunology, 2013, 2, e23440.	2.1	4
48	Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation. International Immunology, 2013, 25, 485-494.	1.8	14
49	CD4+ T Cells Play a Critical Role in the Generation of Primary and Memory Antitumor Immune Responses Elicited by SA-4-1BBL and TAA-Based Vaccines in Mouse Tumor Models. PLoS ONE, 2013, 8, e73145.	1.1	30
50	SA-4-1BBL Costimulation Inhibits Conversion of Conventional CD4+ T Cells into CD4+FoxP3+ T Regulatory Cells by Production of IFN-Î ³ . PLoS ONE, 2012, 7, e42459.	1.1	35
51	Prime-Boost Vaccination with SA-4-1BBL Costimulatory Molecule and Survivin Eradicates Lung Carcinoma in CD8+ T and NK Cell Dependent Manner. PLoS ONE, 2012, 7, e48463.	1.1	23
52	TNFR Costimulatory ligands as a platform for the development of vaccines. Journal of Vaccines & Vaccination, 2012, 01, .	0.3	0
53	Killer Treg restore immune homeostasis and suppress autoimmune diabetes in prediabetic NOD mice. Journal of Autoimmunity, 2011, 37, 39-47.	3.0	26
54	Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice. PLoS ONE, 2011, 6, e21630.	1.1	14

#	Article	IF	CITATIONS
55	Is durable macrochimerism key to achieving clinical transplantation tolerance?. Current Opinion in Organ Transplantation, 2011, 16, 343-344.	0.8	8
56	Pancreatic Islets Engineered with SA-FasL Protein Establish Robust Localized Tolerance by Inducing Regulatory T Cells in Mice. Journal of Immunology, 2011, 187, 5901-5909.	0.4	61
57	Abstract 765: Costimulatory SA-4-1BBL and monophosphoryl lipid A as novel adjuvant system for the development of cancer vaccines with robust therapeutic efficacy. , 2011, , .		0
58	Tumor Necrosis Factor Receptors Support Murine Hematopoietic Progenitor Function in the Early Stages of Engraftment. Stem Cells, 2010, 28, 1270-1280.	1.4	34
59	Tumor cells engineered to codisplay on their surface 4-1BBL and LICHT costimulatory proteins as a novel vaccine approach for cancer immunotherapy. Cancer Gene Therapy, 2010, 17, 730-741.	2.2	21
60	4-1BB Ligand as an Effective Multifunctional Immunomodulator and Antigen Delivery Vehicle for the Development of Therapeutic Cancer Vaccines. Cancer Research, 2010, 70, 3945-3954.	0.4	53
61	SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. Vaccine, 2010, 28, 5794-5802.	1.7	32
62	Abstract 2416: SA-4-1BBL costimulatory ligand as an immune modulator and effective vehicle to deliver antigens into dendritic cells for the generation of robust therapeutic antitumor immune responses. , 2010, , .		0
63	Abstract 1501: Tumor cells engineered to codisplay on their surface 4-1BBL and LIGHT costimulatory proteins as a novel vaccine approach for cancer immunotherapy. , 2010, , .		0
64	Costimulation as a Platform for the Development of Vaccines: A Peptide-Based Vaccine Containing a Novel Form of 4-1BB Ligand Eradicates Established Tumors. Cancer Research, 2009, 69, 4319-4326.	0.4	77
65	ProtExâ"¢ technology for the generation of novel therapeutic cancer vaccines. Experimental and Molecular Pathology, 2009, 86, 198-207.	0.9	7
66	A novel form of 4-1BBL has better immunomodulatory activity than an agonistic anti-4-1BB Ab without Ab-associated severe toxicity. Vaccine, 2009, 28, 512-522.	1.7	50
67	Su.60. A Novel Vaccine Concept for Treatment of Cervical Cancer. Clinical Immunology, 2008, 127, S143-S144.	1.4	0
68	Induction of Tolerance to Cardiac Allografts Using Donor Splenocytes Engineered to Display on Their Surface an Exogenous Fas Ligand Protein. Journal of Immunology, 2008, 181, 931-939.	0.4	32
69	Longitudinal Tracking of Recipient Macrophages in a Rat Chronic Cardiac Allograft Rejection Model With Noninvasive Magnetic Resonance Imaging Using Micrometer-Sized Paramagnetic Iron Oxide Particles. Circulation, 2008, 118, 149-156.	1.6	66
70	CD4+CD25+FoxP3+ T Regulatory Cells Play a Critical Role in Tolerance to Pancreatic Islets Engineered to Display on Their Surface an Exogenous FasL Protein. FASEB Journal, 2008, 22, 862.15.	0.2	0
71	Pancreatic Islets Engineered to Display on Their Surface an Exogenous FasL Protein Survive Indefinitely in Allogeneic Recipients. FASEB Journal, 2008, 22, 862.14.	0.2	0
72	A Chimeric 4â€1BBL as a Potent Adjuvant for Therapeutic Cancer Vaccines. FASEB Journal, 2008, 22, 1077.3.	0.2	0

#	Article	IF	CITATIONS
73	A Novel Approach to Prevent GvHD: Donor Cells Engineered to Display on Their Surface a Recombinant Form of FasL Protein Effectively Prevent Lethal GvHD in a Mouse Model. Blood, 2008, 112, 3519-3519.	0.6	0
74	Ex Vivo Expansion of CD4+CD25+FoxP3+ T Regulatory Cells Based on Synergy between IL-2 and 4-1BB Signaling. Journal of Immunology, 2007, 179, 7295-7304.	0.4	127
75	CD4+CD25+ T Regulatory Cells Dominate Multiple Immune Evasion Mechanisms in Early but Not Late Phases of Tumor Development in a B Cell Lymphoma Model. Journal of Immunology, 2007, 178, 6840-6848.	0.4	101
76	A novel multimeric form of FasL modulates the ability of diabetogenic T cells to mediate type 1 diabetes in an adoptive transfer model. Molecular Immunology, 2007, 44, 2884-2892.	1.0	20
77	Fas Ligand Enhances Hematopoietic Cell Engraftment Through Abrogation of Alloimmune Responses and Nonimmunogenic Interactions. Stem Cells, 2007, 25, 1448-1455.	1.4	25
78	Fas Transduces Dual Apoptotic and Trophic Signals in Hematopoietic Progenitors. Stem Cells, 2007, 25, 3194-3203.	1.4	33
79	Expression of Fas and Fas-ligand in donor hematopoietic stem and progenitor cells is dissociated from the sensitivity to apoptosis. Experimental Hematology, 2007, 35, 1601-1612.	0.2	26
80	Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunology, Immunotherapy, 2007, 56, 997-1007.	2.0	76
81	Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Current Opinion in Investigational Drugs, 2007, 8, 1002-8.	2.3	41
82	Allograft tolerance: is it a journey towards achieving the impossible?. Current Opinion in Organ Transplantation, 2006, 11, 351-352.	0.8	2
83	Generation of a multimeric form of CD40L with potent immunostimulatory activity using streptavidin as a chaperon. Experimental and Molecular Pathology, 2006, 80, 252-261.	0.9	14
84	The dual role of Fas-ligand as an injury effector and defense strategy in diabetes and islet transplantation. BioEssays, 2006, 28, 211-222.	1.2	29
85	IL-2 Receptor Targeted Immunomodulatory Biologics: The Past, Present, and Future. Current Immunology Reviews, 2006, 2, 187-208.	1.2	2
86	Prophylactic fenbendazole therapy does not affect the incidence and onset of type 1 diabetes in non-obese diabetic mice. International Immunology, 2006, 18, 453-458.	1.8	10
87	Primary Tumor Cells Resected from Cancer Patients and Decorated with a Novel Form of CD80 Protein Serve as Effective Antigen-Presenting Cells for the Induction of Autologous T Cell Immune Responses Ex Vivo. Human Gene Therapy, 2006, 17, 334-346.	1.4	10
88	Tolerance to Rat Heart Grafts Induced by Intrathymic Immunomodulation Is Mediated by Indirect Recognition Primed CD4+CD25+ Treg Cells. Transplantation, 2005, 79, 1492-1497.	0.5	18
89	Induction of tolerance using Fas ligand: a double-edged immunomodulator. Blood, 2005, 105, 1396-1404.	0.6	111
90	ProtExTM: A Novel Technology to Display Exogenous Proteins on the Cell Surface for Immunomodulation. Annals of the New York Academy of Sciences, 2005, 1056, 344-358.	1.8	13

#	Article	IF	CITATIONS
91	Blockade of indirect recognition mediated by CD4+ T cells leads to prolonged cardiac xenograft survival. Xenotransplantation, 2004, 11, 33-42.	1.6	13
92	Chronic heart allograft rejection in rats demonstrates a dynamic interplay between IFN-γ and IL-10 producing T cells. Transplant Immunology, 2004, 13, 201-209.	0.6	11
93	Cardiac Allograft Acceptance after Localized Bone Marrow Transplantation by Isolated Limb Perfusion in Nonmyeloablated Recipients. Stem Cells, 2003, 21, 200-207.	1.4	9
94	Prevention of Chronic Rejection with Immunoregulatory Cells Induced by Intrathymic Immune Modulation with Class I Allopeptides. American Journal of Transplantation, 2003, 3, 581-589.	2.6	4
95	Characterization of adhesion and viability of early seeding hematopoietic cells in the host bone marrow in vivo and in situ. Experimental Hematology, 2003, 31, 1292-1300.	0.2	18
96	Predominant expression of the Th2 response in chronic cardiac allograft rejection. Transplant International, 2003, 16, 562-571.	0.8	15
97	Chronic cardiac allograft rejection in a rat model disparate for one single class I MHC molecule is associated with indirect recognition by CD4+ T cells. Transplant Immunology, 2003, 11, 179-185.	0.6	15
98	Display of Fas Ligand Protein on Cardiac Vasculature as a Novel Means of Regulating Allograft Rejection. Circulation, 2003, 107, 1525-1531.	1.6	47
99	Predominant expression of Th2 cytokines and interferon- \hat{l}^3 in xenogeneic cardiac grafts undergoing acute vascular rejection 1. Transplantation, 2003, 75, 586-590.	0.5	14
100	Predominant expression of the Th2 response in chronic cardiac allograft rejection. Transplant International, 2003, 16, 562-571.	0.8	10
101	A novel approach to cancer immunotherapy: tumor cells decorated with CD80 generate effective antitumor immunity. Cancer Research, 2003, 63, 4067-73.	0.4	43
102	Cell Membrane Modification for Rapid Display of Proteins as a Novel Means of Immunomodulation. Immunity, 2002, 17, 795-808.	6.6	91
103	INDIRECT RECOGNITION AND TH2 RESPONSE PLAY CRITICAL ROLES IN CARDIAC XENOGRAFT REJECTION Transplantation, 2000, 69, S257.	0.5	0
104	ALLOIMMUNE REGULATION BY AUTOIMMUE REPONSES LEADS TO PROLONGED CARDIAC ALLOGRAFT SURVIVAL Transplantation, 2000, 69, S395.	0.5	1
105	CHRONIC ALLOGRAFT REJECTION. Transplantation, 1999, 68, 715-726.	0.5	121
106	INTRATHYMIC IMMUNE NONRESPONSIVENESS WITH CLASS I MHC ALLOPEPTIDES IS ASSOCIATED WITH SUPPRESSIVE IMMUNE MECHANISMS. Transplantation, 1999, 67, S66.	0.5	0
107	TCR Î ² -CHAIN REPERTOIRE USE IN RESPONSE TO CARDIAC ALLOGRAFTS DISPARATE FOR ONE CLASS I MHC MOLECULE. Transplantation, 1999, 67, S40.	0.5	0
108	CONRIBUTION OF THE INDIRECT RECOGNITION PATHWAY TO CARDIAC GRAFT REJECTION IN THE RAT-to-MOUSE XENOGENIC MODEL. Transplantation, 1999, 67, S555.	0.5	0

#	Article	IF	CITATIONS
109	Xenoreactions and their modulation with bone marrow transplantation to induce tolerance. Current Opinion in Organ Transplantation, 1999, 4, 202-210.	0.8	0
110	The importance of humoral immune responses in chronic rejection. Transplantation Reviews, 1998, 12, 166-176.	1.2	17
111	THE HUMORAL RESPONSE TO XENOGRAFTS IS CONTROLLED BY A RESTRICTED REPERTOIRE OF IMMUNOGLOBULIN VH GENES1. Transplantation, 1998, 66, 1375-1383.	0.5	16
112	PREDOMINANT EXPRESSION OF T HELPER 2 CYTOKINES AND ALTERED EXPRESSION OF T HELPER 1 CYTOKINES IN LONG-TERM ALLOGRAFT SURVIVAL INDUCED BY INTRATHYMIC IMMUNE MODULATION WITH DONOR CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX PEPTIDES1,2. Transplantation, 1998, 66, 1802-1809.	0.5	30
113	IMMUNE NONRESPONSIVENESS TO CARDIAC ALLOGRAFTS BY INTRATHYMIC INOCULATION OF DONOR CLASS I ALLOPEPTIDES IS ASSOCIATED WITH HIGH LEVELS OF TRANSCRIPTS FOR TH2 CYTOKINES IN THE GRAFT. Transplantation, 1998, 65, S101.	0.5	0
114	INDUCTION OF ALLOGRAFT NONRESPONSIVENESS AFTER INTRATHYMIC INOCULATION WITH DONOR CLASS I ALLOPEPTIDES. Transplantation, 1997, 64, 1665-1670.	0.5	34
115	INDUCTION OF ALLOGRAFT NONRESPONSIVENESS AFTER INTRATHYMIC INOCULATION WITH DONOR CLASS I ALLOPEPTIDES. Transplantation, 1997, 64, 1671-1676.	0.5	38
116	PRETRANSPLANT INJECTION OF ALLOGRAFT RECIPIENTS WITH DONOR BLOOD OR LYMPHOCYTES PERMITS ALLOGRAFT TOLERANCE WITHOUT THE PRESENCE OF PERSISTENT DONOR MICROCHIMERISM1. Transplantation, 1996, 61, 1382-1386.	0.5	45
117	GENETIC CONTROL OF THE HUMORAL IMMUNE RESPONSE TO XENOGRAFTS. Transplantation, 1995, 60, 1504-1510.	0.5	29
118	DIFFERENTIAL USAGE OF THE T CELL RECEPTOR REPERTOIRE FOR ALLORECOGNITION OF HEART, LIVER, AND KIDNEY GRAFTS. Transplantation, 1995, 59, 1709-1714.	0.5	10
119	PEPTIDES DERIVED FROM α-HELICES OF ALLOGENEIC CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX ANTIGENS ARE POTENT INDUCERS OF CD4+ AND CD8+ T CELL AND B CELL RESPONSES AFTER CARDIAC ALLOGRAFT REJECTION. Transplantation, 1995, 59, 401-409.	6 0.5	36
120	Polymerase chain reaction detection of chimerism in rats based on an allelic polymorphism for T cell antigen receptor Cβ genes. Transplant Immunology, 1994, 2, 253-256.	0.6	7