Rainer Wieler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/318899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 2007, 450, 1206-1209.	13.7	414
2	Primordial noble gases in "phase Q―in carbonaceous and ordinary chondrites studied by closedâ€system stepped etching. Meteoritics and Planetary Science, 2000, 35, 949-973.	0.7	268
3	Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 2011, 312, 390-400.	1.8	256
4	He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. Journal of Geophysical Research, 1993, 98, 13147-13162.	3.3	226
5	The production of cosmogenic nuclides in stony meteoroids by galactic cosmicâ€ray particles. Meteoritics and Planetary Science, 2000, 35, 259-286.	0.7	179
6	A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica Et Cosmochimica Acta, 1996, 60, 2681-2708.	1.6	178
7	Noble gas composition of the solar wind as collected by the Genesis mission. Geochimica Et Cosmochimica Acta, 2009, 73, 7414-7432.	1.6	172
8	A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica Et Cosmochimica Acta, 1997, 61, 623-637.	1.6	169
9	A hit-and-run giant impact scenario. Icarus, 2012, 221, 296-299.	1.1	168
10	Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth and Planetary Science Letters, 1999, 167, 215-226.	1.8	158
11	Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology, 2007, 83, 97-120.	1.1	151
12	The limited influence of glaciations in Tibet on global climate over the past 170â€^000 yr. Earth and Planetary Science Letters, 2002, 194, 287-297.	1.8	142
13	Solar Wind Neon from Genesis: Implications for the Lunar Noble Gas Record. Science, 2006, 314, 1133-1135.	6.0	126
14	Nuclide production by proton-induced reactions on elements (6 â‰ヹ â‰ヹ9) in the energy range from 800 to 2600 MeV. Nuclear Instruments & Methods in Physics Research B, 1995, 103, 183-222.	0.6	119
15	Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil minerals. Geochimica Et Cosmochimica Acta, 1986, 50, 1997-2017.	1.6	118
16	Cosmic-Ray-Produced Noble Gases in Meteorites. Reviews in Mineralogy and Geochemistry, 2002, 47, 125-170.	2.2	114
17	Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 2014, 403, 317-327.	1.8	111
18	Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years. Geochimica Et Cosmochimica Acta, 2001, 65, 2995-3003.	1.6	109

#	Article	IF	CITATIONS
19	Characterisation of Q-gases and other noble gas components in the Murchison meteorite. Geochimica Et Cosmochimica Acta, 1992, 56, 2907-2921.	1.6	108
20	Noble Gases in the Solar System. Reviews in Mineralogy and Geochemistry, 2002, 47, 21-70.	2.2	108
21	Fast delivery of meteorites to Earth after a major asteroid collision. Nature, 2004, 430, 323-325.	13.7	101
22	Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 2013, 361, 162-172.	1.8	99
23	Climate and Groundwater Recharge During the Last Glaciation in an Ice-Covered Region. , 1998, 282, 731-734.		97
24	Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic3He and21Ne. Earth and Planetary Science Letters, 1997, 147, 37-54.	1.8	96
25	Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochimica Et Cosmochimica Acta, 2010, 74, 340-355.	1.6	94
26	The Predictable Collateral Consequences of Nucleosynthesis by Spallation Reactions in the Early Solar System. Astrophysical Journal, 2003, 594, 605-616.	1.6	93
27	Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quaternary Science Reviews, 2008, 27, 295-311.	1.4	93
28	An Overview of Noble Gas Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry, 2002, 47, 1-19.	2.2	90
29	Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf–W cosmochemistry. Earth and Planetary Science Letters, 2000, 175, 1-12.	1.8	87
30	Noble gases in "phase Q― Closed-system etching of an Allende residue. Geochimica Et Cosmochimica Acta, 1991, 55, 1709-1722.	1.6	85
31	Krypton and xenon from the solar wind and solar energetic particles in two lunar ilmenites of different antiquity. Meteoritics, 1994, 29, 570-580.	1.5	82
32	The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 2000, 179, 91-99.	1.8	80
33	U-Xe, U-Kr, and U-Pb systematics for dating uranium minerals and investigations of the production of nucleogenic neon and argon. Geochimica Et Cosmochimica Acta, 1993, 57, 1053-1069.	1.6	79
34	The influence of cosmic-ray production on extinct nuclide systems. Geochimica Et Cosmochimica Acta, 2003, 67, 529-541.	1.6	79
35	Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochimica Et Cosmochimica Acta, 1990, 54, 2511-2520.	1.6	78
36	Assessing Ar transport paths and mechanisms in the McClure Mountains hornblende. Contributions To Mineralogy and Petrology, 1996, 126, 67-80.	1.2	77

#	Article	IF	CITATIONS
37	Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters, 2003, 216, 201-208.	1.8	76
38	ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE <i>GENESIS</i> MISSION. Astrophysical Journal, 2012, 759, 121.	1.6	75
39	Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochimica Et Cosmochimica Acta, 2012, 99, 287-304.	1.6	75
40	Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth and Planetary Science Letters, 2002, 198, 267-274.	1.8	73
41	Correlated helium-3 and tungsten isotopes in iron meteorites: Quantitative cosmogenic corrections and planetesimal formation times. Earth and Planetary Science Letters, 2006, 250, 104-115.	1.8	72
42	Quantification of gas fluxes from the subcontinental mantle: The example of Laacher See, a maar lake in Germany. Geochimica Et Cosmochimica Acta, 1996, 60, 31-41.	1.6	71
43	NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM-TUNGSTEN CHRONOMETRY. Astrophysical Journal Letters, 2012, 753, L6.	3.0	71
44	Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009, 199, 245-249.	1.1	70
45	Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth and Planetary Science Letters, 2012, 357-358, 298-307.	1.8	70
46	The Solar Noble Gas Record in Lunar Samples and Meteorites. Space Science Reviews, 1998, 85, 303-314.	3.7	68
47	The production of cosmogenic nuclides by galactic cosmicâ€ray particles for 2Ï€ exposure geometries. Meteoritics and Planetary Science, 2001, 36, 1547-1561.	0.7	68
48	Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix. Geochimica Et Cosmochimica Acta, 1989, 53, 1441-1448.	1.6	66
49	Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains. Nature, 1996, 384, 46-49.	13.7	66
50	Accumulation of mantle gases in a permanently stratified volcanic lake (Lac Pavin, France). Geochimica Et Cosmochimica Acta, 1999, 63, 3357-3372.	1.6	65
51	Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth and Planetary Science Letters, 1999, 167, 47-60.	1.8	61
52	Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the Lâ€chondrite parent body breakup event. Meteoritics and Planetary Science, 2008, 43, 517-528.	0.7	61
53	Production of stable and radioactive nuclides in thick stony targets (R = 15 and 25 cm) isotropically irradiated with 600 MeV protons and simulation of the production of cosmogenic nuclides in meteorites. Nuclear Instruments & Methods in Physics Research B, 1989, 42, 76-100.	0.6	57
54	The Genesis Solar-Wind Collector Materials. Space Science Reviews, 2003, 105, 535-560.	3.7	57

#	Article	IF	CITATIONS
55	Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1884-1889.	3.3	57
56	Exposure history of the regolithic chondrite Fayetteville: II. Solar-gas-free light inclusions. Geochimica Et Cosmochimica Acta, 1989, 53, 1449-1459.	1.6	56
57	Comparative Studies of Solar, Q-Gases and Terrestrial Noble Gases, and Implications on the Evolution of the Solar Nebula. Geochimica Et Cosmochimica Acta, 1998, 62, 301-314.	1.6	56
58	Cosmicâ€ray exposure history of two Frontier Mountain Hâ€chondrite showers from spallation and neutronâ€capture products. Meteoritics and Planetary Science, 2001, 36, 301-317.	0.7	56
59	In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe–Ti-oxide minerals. Earth and Planetary Science Letters, 2005, 236, 404-418.	1.8	55
60	Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochimica Et Cosmochimica Acta, 2011, 75, 3057-3071.	1.6	51
61	Elemental Abundances of the Bulk Solar Wind: Analyses from Genesis and ACE. Space Science Reviews, 2007, 130, 79-86.	3.7	50
62	Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile. Earth Surface Processes and Landforms, 2009, 34, 398-412.	1.2	50
63	Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic 10Be, 26Al, and in situ 14C. Geomorphology, 2012, 179, 58-70.	1.1	50
64	Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C. Quaternary Geochronology, 2014, 19, 14-26.	0.6	50
65	On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus, 2014, 242, 316-328.	1.1	49
66	Late Glacial ice advances in southeast Tibet. Journal of Asian Earth Sciences, 2009, 34, 458-465.	1.0	48
67	On the depth dependence of spallation reactions in a spherical thick diorite target homogeneously irradiated by 600 MeV protons. Nuclear Instruments & Methods in Physics Research B, 1986, 16, 61-82.	0.6	47
68	Presolar He and Ne Isotopes in Single Circumstellar SiC Grains. Astrophysical Journal, 2007, 656, 1208-1222.	1.6	47
69	The evolution of Venus: Present state of knowledge and future exploration. Planetary and Space Science, 2012, 63-64, 15-23.	0.9	47
70	Uranium-xenon chronology: precise determination of λsÆ' â^—136YsÆ' for spontaneous fission of 238U. Earth and Planetary Science Letters, 1994, 128, 653-670.	1.8	45
71	Noble gases and cosmogenic radionuclides in the Gold Basin L4 chondrite shower: Thermal history, exposure history, and preâ€atmospheric size. Meteoritics and Planetary Science, 2003, 38, 157-173.	0.7	45
72	Fractionation of Xe, Kr, and AR in the Solar Corpuscular Radiation Deduced by Closed System Etching of Lunar Soils. Astrophysical Journal, 1995, 453, 987.	1.6	45

#	Article	IF	CITATIONS
73	Interlaboratory comparison of cosmogenic 21 Ne in quartz. Quaternary Geochronology, 2015, 26, 20-28.	0.6	44
74	Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies. Geochimica Et Cosmochimica Acta, 2018, 238, 516-541.	1.6	44
75	Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surfaces. Earth and Planetary Science Letters, 2002, 202, 201-216.	1.8	43
76	Nucleogenic production of Ne isotopes in Earth's crust and upper mantle induced by alpha particles from the decay of U and Th. Journal of Geophysical Research, 1999, 104, 15439-15450.	3.3	42
77	Solar wind helium, neon, and argon isotopic and elemental composition: Data from the metallic glass flown on NASA's Genesis mission. Geochimica Et Cosmochimica Acta, 2008, 72, 626-645.	1.6	42
78	Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quaternary Research, 2009, 71, 83-92.	1.0	42
79	5. Cosmic-Ray-Produced Noble Gases in Meteorites. , 2002, , 125-170.		41
80	Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chemical Geology, 2010, 272, 31-39.	1.4	41
81	Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka. Earth and Planetary Science Letters, 2018, 490, 122-131.	1.8	41
82	An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Science Advances, 2019, 5, eaax4184.	4.7	41
83	Exposure history of the Torino meteorite. Meteoritics and Planetary Science, 1996, 31, 265-272.	0.7	39
84	Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides. Antarctic Science, 2003, 15, 493-502.	0.5	38
85	Cosmogenic nuclides in Almahata Sitta ureilites: Cosmicâ€ray exposure age, preatmospheric mass, and bulk density of asteroid 2008 TC ₃ . Meteoritics and Planetary Science, 2010, 45, 1728-1742.	0.7	38
86	The Galactic Cosmic Ray Intensity over the Past 106–109 Years as Recorded by Cosmogenic Nuclides in Meteorites and Terrestrial Samples. Space Science Reviews, 2013, 176, 351-363.	3.7	38
87	Noble gases in 18 Martian meteorites and angrite Northwest Africa 7812—Exposure ages, trapped gases, and a reâ€evaluation of the evidence for solar cosmic rayâ€produced neon in shergottites and other achondrites. Meteoritics and Planetary Science, 2016, 51, 407-428.	0.7	36
88	Title is missing!. Space Science Reviews, 2003, 106, 175-196.	3.7	35
89	Calibration of cosmogenic noble gas production in ordinary chondrites based on ³⁶ Clâ€ ³⁶ Ar ages. Part 1: Refined produced rates for cosmogenic ²¹ Ne and ³⁸ Ar. Meteoritics and Planetary Science, 2013, 48, 1841-1862.	0.7	35
90	The current performance of the in situ 14C extraction line at ETH. Quaternary Geochronology, 2009, 4, 493-500.	0.6	34

#	Article	IF	CITATIONS
91	Noble Gases. , 2002, , .		34
92	Terrestrial ages, pairing, and concentration mechanism of Antarctic chondrites from Frontier Mountain, Northern Victoria Land. Meteoritics and Planetary Science, 2006, 41, 1081-1094.	0.7	33
93	Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone. Earth and Planetary Science Letters, 2010, 290, 54-63.	1.8	33
94	Cross sections for the proton-induced production of He and Ne isotopes from magnesium, aluminum, and silicon. Nuclear Instruments & Methods in Physics Research B, 1998, 145, 449-458.	0.6	32
95	INTERSTELLAR RESIDENCE TIMES OF PRESOLAR SIC DUST GRAINS FROM THE MURCHISON CARBONACEOUS METEORITE. Astrophysical Journal, 2009, 698, 1155-1164.	1.6	32
96	Cosmogenic neon in mineral separates from Kapoeta: No evidence for an irradiation of its parent body regolith by an early active Sun. Meteoritics and Planetary Science, 2000, 35, 251-257.	0.7	31
97	An update on in situ cosmogenic 14C analysis at ETH Zürich. Nuclear Instruments & Methods in Physics Research B, 2013, 294, 81-86.	0.6	31
98	Simulation of the interaction of galactic cosmic ray protons with meteoroids: On the production of ³ H and light noble gas isotopes in isotropically irradiated thick gabbro and iron targets. Meteoritics and Planetary Science, 2004, 39, 367-386.	0.7	30
99	The cosmogenic 21Ne production rate in quartz evaluated on a large set of existing 21Ne–10Be data. Earth and Planetary Science Letters, 2011, 302, 163-171.	1.8	29
100	The Kapoeta howardite: Implications for the regolith evolution of the howarditeâ€eucriteâ€diogenite parent body. Meteoritics and Planetary Science, 1998, 33, 835-851.	0.7	28
101	Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes. Antarctic Science, 2008, 20, 89-98.	0.5	28
102	Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic Ice Sheet, Ricker Hills, Victoria Land. Antarctic Science, 2009, 21, 59-69.	0.5	28
103	On the Bur Gheluai H5 chondrite and other meteorites with complex exposure histories. Meteoritics, 1993, 28, 71-85.	1.5	27
104	Consequences of the non-existence of the "SEP―component for noble gas geo-and cosmochemistry. Chemical Geology, 2007, 244, 382-390.	1.4	27
105	Cosmicâ€ray exposure ages of six chondritic Almahata Sitta fragments. Meteoritics and Planetary Science, 2017, 52, 2353-2374.	0.7	27
106	Noble Gas Isotopes on the Moon. Space Science Reviews, 2003, 106, 197-210.	3.7	26
107	Helium in Lunar Samples Analyzed by Highâ€Resolution Stepwise Etching: Implications for the Temporal Constancy of Solar Wind Isotopic Composition. Astrophysical Journal, 2003, 597, 602-614.	1.6	26
108	The production rate of cosmogenic 38Ar from calcium in terrestrial pyroxene. Earth and Planetary Science Letters, 2007, 257, 596-608.	1.8	26

#	Article	IF	CITATIONS
109	Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions. Chemical Geology, 2011, 288, 61-66.	1.4	26
110	Helium, neon, and argon abundances in the solar wind: In vacuo etching of meteoritic iron-nickel. Geochimica Et Cosmochimica Acta, 1997, 61, 1303-1314.	1.6	25
111	Noble Gases in Mantle Plumes. Science, 2001, 291, 2269a-2269.	6.0	25
112	Isotopic Signatures of Volatiles in Terrestrial Planets - Working Group Report. Space Science Reviews, 2003, 106, 377-410.	3.7	25
113	Ne ISOTOPES IN INDIVIDUAL PRESOLAR GRAPHITE GRAINS FROM THE MURCHISON METEORITE TOGETHER WITH He, C, O, Mg-Al ISOTOPIC ANALYSES AS TRACERS OF THEIR ORIGINS. Astrophysical Journal, 2009, 701, 1415-1425.	1.6	25
114	Roosevelt County 075: A petrologic, chemical and isotopic study of the most unequilibrated known H chondrite. Meteoritics, 1993, 28, 681-691.	1.5	24
115	Cosmogenic helium and neon in individual chondrules from Allende and Murchison: Implications for the precompaction exposure history of chondrules. Meteoritics and Planetary Science, 2011, 46, 989-1006.	0.7	24
116	Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data. Chemie Der Erde, 2016, 76, 463-480.	0.8	24
117	Cosmogenic nuclides in differentiated antarctic meteorites: measurements and model calculations. Planetary and Space Science, 1995, 43, 545-556.	0.9	23
118	Cosmogenic 3He and 21Ne measured in quartz targets after one year of exposure in the Swiss Alps. Earth and Planetary Science Letters, 2009, 284, 417-425.	1.8	23
119	Depth-dependence of the production rate of in situ 14C in quartz from the Leymon High core, Spain. Quaternary Geochronology, 2015, 28, 80-87.	0.6	23
120	Drivers of abrupt Holocene shifts in West Antarctic ice stream direction determined from combined ice sheet modelling and geologic signatures. Antarctic Science, 2014, 26, 674-686.	0.5	22
121	Cosmogenic nuclides in the KoÅjice meteorite: Experimental investigations and Monte Carlo simulations. Meteoritics and Planetary Science, 2015, 50, 880-892.	0.7	22
122	Depth dependence of 10Be and 26Al production rates in the iron meteorite grant. Nuclear Instruments & Methods in Physics Research B, 1987, 29, 262-265.	0.6	21
123	Exposure history of the Stâ€Robert (H5) fall. Meteoritics and Planetary Science, 2001, 36, 1479-1494.	0.7	20
124	Noble gases in chondrules and associated metalâ€sulfideâ€rich samples: Clues on chondrule formation and the behavior of noble gas carrier phases. Meteoritics and Planetary Science, 2004, 39, 117-135.	0.7	20
125	Production of noble gas isotopes by proton-induced reactions on lead. Nuclear Instruments & Methods in Physics Research B, 2005, 229, 1-23.	0.6	20
126	The 2010 European Venus Explorer (EVE) mission proposal. Experimental Astronomy, 2012, 33, 305-335.	1.6	20

#	Article	IF	CITATIONS
127	Origin and history of chondrite regolith, fragmental and impactâ€melt breccias from Spain. Meteoritics, 1990, 25, 127-135.	1.5	19
128	Microdistribution of primordial Ne and Ar in fineâ€grained rims, matrices, and dark inclusions of unequilibrated chondrites—Clues on nebular processes. Meteoritics and Planetary Science, 2003, 38, 1399-1418.	0.7	19
129	Trapping and Modification Processes of Noble Gases and Nitrogen in Meteorites and Their Parent Bodies. , 2006, , 499-522.		19
130	Multiple cosmogenic nuclides document the stability of the East Antarctic Ice Sheet in northern Victoria Land since the Late Miocene (5–7ÂMa). Quaternary Science Reviews, 2012, 57, 85-94.	1.4	18
131	A noble gas and cosmogenic radionuclide analysis of two ordinary chondrites from Almahata Sitta. Meteoritics and Planetary Science, 2012, 47, 1075-1086.	0.7	18
132	High early solar activity inferred from helium and neon excesses in the oldest meteorite inclusions. Nature Astronomy, 2018, 2, 709-713.	4.2	18
133	Cosmic Ray Exposure History of Meteorites. , 2001, , 221-240.		18
134	Spallogenic nuclides in meteorites by conventional and accelerator mass spectrometry. Nuclear Instruments & Methods in Physics Research B, 1984, 5, 411-414.	0.6	17
135	A composite Fe,Niâ€FeS and enstatiteâ€forsteriteâ€diopsideâ€glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism. Meteoritics and Planetary Science, 2011, 46, 1719-1741.	0.7	17
136	Cosmicâ€ray prdocution rates of helium, neon and argon isotopes in H chondrites based on chlorineâ€36/argonâ€36 ages. Meteoritics and Planetary Science, 2001, 36, 963-973.	0.7	16
137	Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas. Climate of the Past, 2013, 9, 1-12.	1.3	16
138	RAGLAND, AN LL3.4 CHONDRITE FIND FROM NEW MEXICO. Meteoritics, 1986, 21, 217-229.	1.5	15
139	Noble gas studies in CAIs from CV3 chondrites: No evidence for primordial noble gases. Meteoritics and Planetary Science, 2004, 39, 767-778.	0.7	15
140	10Be,26Al,53Mn, and light noble gases in the Antarctic shergottite EETA 79001 (A). Earth and Planetary Science Letters, 1985, 75, 72-76.	1.8	14
141	Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.	1.6	14
142	A global rain of micrometeorites following breakup of the Lâ€chondrite parent body—Evidence from solar windâ€implanted Ne in fossil extraterrestrial chromite grains from China. Meteoritics and Planetary Science, 2012, 47, 1297-1304.	0.7	14
143	Graphite grains in supernova ejecta – Insights from a noble gas study of 91 individual KFC1 presolar graphite grains from the Murchison meteorite. Geochimica Et Cosmochimica Acta, 2012, 76, 147-160.	1.6	14
144	Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia. Geochimica Et Cosmochimica Acta, 2014, 125, 338-350.	1.6	14

#	Article	IF	CITATIONS
145	The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) <scp>LL</scp> chondrite. Meteoritics and Planetary Science, 2015, 50, 1089-1111.	0.7	14
146	Atom probe tomography of spaceâ€weathered lunar ilmenite grain surfaces. Meteoritics and Planetary Science, 2020, 55, 426-440.	0.7	14
147	Depth profiling analysis of solar wind helium collected in diamond-like carbon film from <i>Genesis</i> . Geochemical Journal, 2015, 49, 559-566.	0.5	14
148	Decrease of the solar flare/solar wind flux ratio in the past several aeons deduced from solar neon and tracks in lunar soil plagioclases. Journal of Geophysical Research, 1983, 88, A713.	3.3	13
149	Meteorite finds by EUROMET near Frontier Mountain, North Victoria Land, Antarctica. Meteoritics, 1993, 28, 126-129.	1.5	13
150	Composition of Light Solar Wind Noble Gases in the Bulk Metallic Glass flown on the Genesis Mission. Space Science Reviews, 2007, 130, 293-300.	3.7	13
151	Isotopic and elemental fractionation of solar wind implanted in the Genesis concentrator target characterized and quantified by noble gases. Meteoritics and Planetary Science, 2011, 46, 493-512.	0.7	13
152	Cosmogenic He and Ne in chondrules from clastic matrix and a lithic clast of Murchison: No pre-irradiation by the early sun. Geochimica Et Cosmochimica Acta, 2017, 213, 618-634.	1.6	13
153	Noble gases in the Martian meteorite Northwest Africa 2737: A new chassignite signature. Meteoritics and Planetary Science, 2006, 41, 739-748.	0.7	12
154	Interstellar Helium Trapped with the COLLISA Experiment on theMiRSpace Station—Improved Isotope Analysis by In Vacuo Etching. Astrophysical Journal, 2006, 639, 246-258.	1.6	11
155	The Genesis Solar Wind Concentrator Target: Mass Fractionation Characterised by Neon Isotopes. Space Science Reviews, 2007, 130, 309-316.	3.7	11
156	He and Ne Ages of Large Presolar Silicon Carbide Grains: Solving the Recoil Problem. Publications of the Astronomical Society of Australia, 2009, 26, 297-302.	1.3	11
157	Cosmicâ€ray exposure age and preatmospheric size of the Bunburra Rockhole achondrite. Meteoritics and Planetary Science, 2012, 47, 186-196.	0.7	11
158	The abundance and isotopic composition of Cd in iron meteorites. Meteoritics and Planetary Science, 2013, 48, 2597-2607.	0.7	11
159	He and Ne in individual chromite grains from the regolith breccia Ghubara (L5): Exploring the history of the L chondrite parent body regolith. Meteoritics and Planetary Science, 2014, 49, 576-594.	0.7	11
160	No evidence for a decrease of nuclear decay rates with increasing heliocentric distance based on radiochronology of meteorites. Astroparticle Physics, 2014, 55, 63-75.	1.9	11
161	Solar and Solar-Wind Composition Results fromÂtheÂGenesis Mission. Space Science Reviews, 2007, 130, 161-171.	3.7	10
162	A combined vacuum crushing and sieving (CVCS) system designed to determine noble gas paleotemperatures from stalagmite samples. Geochemistry, Geophysics, Geosystems, 2013, 14, 2432-2444.	1.0	10

#	Article	IF	CITATIONS
163	Closed System Step Etching of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles. Geochimica Et Cosmochimica Acta, 2017, 205, 65-83.	1.6	9
164	A comprehensive study of noble gases and nitrogen in "Hypatiaâ€, a diamond-rich pebble from SW Egypt. Earth and Planetary Science Letters, 2015, 432, 243-253.	1.8	8
165	Classification of four ordinary chondrites from Spain. Meteoritics, 1990, 25, 77-79.	1.5	7
166	Calibration of cosmogenic noble gas production based on ³⁶ Clâ€ ³⁶ Ar ages. Part 2. The ⁸¹ Krâ€Kr dating technique. Meteoritics and Planetary Science, 2015, 50, 1863-1879.	0.7	7
167	Production of noble gas isotopes by proton-induced reactions on lead and bismuth. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 562, 760-763.	0.7	6
168	Production of noble gas isotopes by proton-induced reactions on bismuth. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1030-1042.	0.6	6
169	Cosmic ray exposure ages of Rumuruti chondrites from North Africa. Chemie Der Erde, 2011, 71, 135-142.	0.8	6
170	Noble Gas Mass Spectrometry. , 2014, , 355-373.		6
171	Performance of CRONUS-P – A pyroxene reference material for helium isotope analysis. Quaternary Geochronology, 2016, 31, 237-239.	0.6	6
172	Noble Gas Isotopes on the Moon. Space Sciences Series of ISSI, 2003, , 197-210.	0.0	6
173	Paleotemperature reconstruction using noble gas concentrations in speleothem fluid inclusions. PAGES News, 2008, 13, 10-12.	0.3	6
174	The Solar Noble Gas Record in Lunar Samples and Meteorites. Space Sciences Series of ISSI, 1998, , 303-314.	0.0	6
175	An upper limit on the spontaneous fission decay constant of232Th derived from xenon in monazites with extremely high Th/U ratios. Geophysical Research Letters, 1999, 26, 107-110.	1.5	5
176	³ He, ^{20,21,22} Ne, ¹⁴ C, ¹⁰ Be, ²⁶ Al, and ³⁶ Cl in magnetic fractions of cosmic dust from Greenland and Antarctica. Meteoritics and Planetary Science, 2007, 42, 1831-1840.	0.7	5
177	Comment on "Cosmogenic neon in grains separated from individual chondrules: Evidence of precompaction exposure in chondrules―by J. P. Das, J. N. Goswami, O. V. Pravdivtseva, A. P. Meshik, and C. M. Hohenberg. Meteoritics and Planetary Science, 2013, 48, 1524-1528.	0.7	5
178	Fall, classification, and exposure history of the Mifflin L5 chondrite. Meteoritics and Planetary Science, 2013, 48, 641-655.	0.7	5
179	Cosmogenic nuclides in eucrites. Nuclear Instruments & Methods in Physics Research B, 1990, 52, 612-617.	0.6	4
180	The Roosevelt County 079–090 meteorites. Meteoritics, 1995, 30, 788-791.	1.5	4

#	Article	IF	CITATIONS
181	Preâ€atmospheric depths and thermal histories of Canyon Diablo spheroids. Meteoritics and Planetary Science, 2002, 37, 1015-1025.	0.7	4
182	Noble gas elemental abundances in three solar wind regimes as recorded by the Genesis mission. Geochimica Et Cosmochimica Acta, 2019, 263, 182-194.	1.6	4
183	Effects of aqueous alteration on primordial noble gases and presolar SiC in the carbonaceous chondrite Tagish Lake. Meteoritics and Planetary Science, 2020, 55, 1257-1280.	0.7	4
184	Elemental Abundances of Major Elements in the Solar Wind as Measured in Genesis Targets and Implications on Solar Wind Fractionation. Astrophysical Journal, 2021, 907, 15.	1.6	4
185	Cosmogenic nuclides in a Swiss cheese. Meteoritics and Planetary Science, 1997, 32, 3-4.	0.7	3
186	Solar Krypton and Xenon in gas-rich meteorites: New insights into a unique archive of solar wind. AIP Conference Proceedings, 2001, , .	0.3	3
187	1. An Overview of Noble Gas Geochemistry and Cosmochemistry. , 2002, , 1-20.		3
188	The Ardón L6 ordinary chondrite: A longâ€hidden Spanish meteorite fall. Meteoritics and Planetary Science, 2014, 49, 1475-1484.	0.7	3
189	The Olton, Texas, H chondrite regolith breccia: Paired with Dimmitt. Meteoritics, 1990, 25, 259-261.	1.5	2
190	Applications of abundance data and requirements for cosmochemical modeling. AIP Conference Proceedings, 2001, , .	0.3	2
191	Similarities and differences between the solar wind light noble gas compositions determined on Apollo 15 <scp>SWC</scp> foils and on <scp>NASA</scp> Genesis targets. Meteoritics and Planetary Science, 2015, 50, 1663-1683.	0.7	2
192	A tribute to Peter Signer…. Meteoritics, 1994, 29, 567-568.	1.5	1
193	Absolute chronology of glacial events in Quinghai-Xizang Plateau, Eastern Tibet, PR China, determined via cosmogenic21Ne. Science Bulletin, 1998, 43, 112-112.	1.7	1
194	Comment on "Radiation History of Fossil Meteorites from Sweden―by V.A. Alexeev (2010), solar system research, 44, 311–319. Solar System Research, 2011, 45, 459-461.	0.3	1
195	Accretion and Early History of Planetesimals and Planets: The Noble Gas Record. Earth, Moon and Planets, 2011, 108, 1-8.	0.3	1
196	Neon isotopes in individual presolar lowâ€density graphite grains from the Orgueil meteorite. Meteoritics and Planetary Science, 2018, 53, 2327-2342.	0.7	1
197	Noble gases in cluster chondrite clasts and their host breccias. Meteoritics and Planetary Science, 2021, 56, 642-662.	0.7	1
198	Investigating space-weathering on the moon using APT. Microscopy and Microanalysis, 2021, 27, 2052-2054.	0.2	1

#	Article	IF	CITATIONS
199	Solar and Solar-Wind Composition Results fromÂtheÂGenesis Mission. Space Sciences Series of ISSI, 2007, , 161-171.	0.0	1
200	The Galactic Cosmic Ray Intensity over the Past 106–109 Years as Recorded by Cosmogenic Nuclides in Meteorites and Terrestrial Samples. Space Sciences Series of ISSI, 2011, , 351-363.	0.0	1
201	Cosmogenic Nuclides. Encyclopedia of Earth Sciences Series, 2017, , 1-10.	0.1	1
202	Nitrogen Isotopes on the Moon: Archives of the Solar and Planetary Contributions to the Inner Solar System. Space Sciences Series of ISSI, 2003, , 175-196.	0.0	1
203	Production of noble gas isotopes by proton-induced reactions on Mg, Al, Si, Fe, Ni, Pb, and Bi. , 2007, , .		1
204	Exposure history of constituents of asteroidal regoliths: Constraints imposed by cosmogenic noble gases. Chemical Geology, 1988, 70, 26.	1.4	0
205	Time to RELAX?. Meteoritics, 1995, 30, 363-363.	1.5	0
206	Small droplets from a large meteorite. Meteoritics, 1995, 30, 242-243.	1.5	0
207	3He and4He in the local interstellar gas as observed with the COLLISA foil experiment on the Mir space station. Proceedings of the International Astronomical Union, 2005, 1, 77-80.	0.0	0
208	Isotopic Signatures of Volatiles in Terrestrial Planets. Space Sciences Series of ISSI, 2003, , 377-410.	0.0	0
209	Elemental Abundances of the Bulk Solar Wind: Analyses from Genesis and ACE. Space Sciences Series of ISSI, 2007, , 79-86.	0.0	0
210	Composition of Light Solar Wind Noble Gases in the Bulk Metallic Glass flown on the Genesis Mission. Space Sciences Series of ISSI, 2007, , 293-300.	0.0	0
211	Cosmogenic Nuclides. Encyclopedia of Earth Sciences Series, 2018, , 317-325.	0.1	0