Anukul Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3188691/publications.pdf

Version: 2024-02-01

		257450	302126
65	1,633	24	39
papers	citations	h-index	g-index
69	69	69	946
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Germanium(II) Hydride as an Effective Reagent for Hydrogermylation Reactions. Journal of the American Chemical Society, 2009, 131, 1288-1293.	13.7	144
2	Selective Aromatic Câ^'F and Câ^'H Bond Activation with Silylenes of Different Coordinate Silicon. Journal of the American Chemical Society, 2010, 132, 10164-10170.	13.7	116
3	NHCâ€Stabilized Silagermenylidene: A Heavier Analogue of Vinylidene. Angewandte Chemie - International Edition, 2013, 52, 12179-12182.	13.8	97
4	Reactions of $Tin(II)$ Hydride Species with Unsaturated Molecules. Angewandte Chemie - International Edition, 2009, 48, 1106-1109.	13.8	91
5	Nâ€Heterocyclic Carbene Coordinated Neutral and Cationic Heavier Cyclopropylidenes. Angewandte Chemie - International Edition, 2014, 53, 9953-9956.	13.8	76
6	Reactivity of germanium(II) hydride with nitrous oxide, trimethylsilyl azide, ketones, and alkynes and the reaction of a methyl analogue with trimethylsilyl diazomethane. Dalton Transactions, 2010, 39, 132-138.	3.3	73
7	NHC-coordinated silagermenylidene functionalized in allylic position and its behaviour as a ligand. Dalton Transactions, 2014, 43, 5175-5181.	3.3	72
8	Germanium(ii) hydride mediated reduction of carbon dioxide to formic acid and methanol with ammonia borane as the hydrogen source. Dalton Transactions, 2010, 39, 9487.	3.3	51
9	Dismutational and Globalâ€Minimum Isomers of Heavier 1,4â€Dimetallatetrasilabenzenes of Groupâ€14. Angewandte Chemie - International Edition, 2014, 53, 3514-3518.	13.8	49
10	Pentagonal Bipyramidal Ln(III) Complexes Containing an Axial Phosphine Oxide Ligand: Field-induced Single-ion Magnetism Behavior of the Dy(III) Analogues. Inorganic Chemistry, 2020, 59, 6603-6612.	4.0	44
11	A Multiply Functionalized Baseâ€Coordinated Ge ^{II} Compound and Its Reversible Dimerization to the Digermene. Angewandte Chemie - International Edition, 2015, 54, 289-292.	13.8	42
12	Hydrostannylation of Ketones and Alkynes with LSnH [L = HC(CMeNAr)2, Ar = $2,6$ -iPr2C6H3]. Inorganic Chemistry, 2009, 48, 9543-9548.	4.0	37
13	Reaction of Tin(II) Hydride with Compounds Containing Aromatic Câ^'F Bonds. Organometallics, 2010, 29, 4837-4841.	2.3	36
14	Endâ€On Nitrogen Insertion of a Diazo Compound into a Germanium(II) Hydrogen Bond and a Comparable Reaction with Diethyl Azodicarboxylate. Angewandte Chemie - International Edition, 2009, 48, 4246-4248.	13.8	35
15	Stepwise Reversible Oxidation of <i>N</i> -Peralkyl-Substituted NHC–CAAC Derived Triazaalkenes: Isolation of Radical Cations and Dications. Organic Letters, 2017, 19, 5605-5608.	4.6	34
16	Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a $\langle i \rangle p \langle i \rangle$ -Phenylene Bridge. Journal of the American Chemical Society, 2021, 143, 3687-3692.	13.7	31
17	Synthesis of a Lewis Base Stabilized Dimer of N-Substituted Hydrosila Hydrazone and a Silaaziridine. Organometallics, 2011, 30, 912-916.	2.3	29
18	A Molecular Complex with a Formally Neutral Iron Germanide Motif (Fe ₂ Ge ₂). Organometallics, 2015, 34, 2130-2133.	2.3	28

#	Article	IF	Citations
19	Dimerization of a marginally stable disilenyl germylene to tricyclic systems: evidence for reversible NHC-coordination. Chemical Communications, 2016, 52, 2799-2802.	4.1	27
20	Reactivity enhancement of a diphosphene by reversible N-heterocyclic carbene coordination. Chemical Science, 2018, 9, 4235-4243.	7.4	26
21	CAACâ€Based Thiele and Schlenk Hydrocarbons. Angewandte Chemie - International Edition, 2020, 59, 6729-6734.	13.8	26
22	Synthesis of phosphine substituted \hat{I}^2 -diketiminate based isomeric Ge(ii) complexes. Dalton Transactions, 2010, 39, 234-238.	3.3	25
23	The oxidation state in low-valent beryllium and magnesium compounds. Chemical Science, 2022, 13, 6583-6591.	7.4	25
24	An anionic heterosiliconoid with two germanium vertices. Chemical Communications, 2019, 55, 10100-10103.	4.1	22
25	Acyclic diaminocarbene-based Thiele, Chichibabin, and MÃ $^1\!/\!4$ ller hydrocarbons. Chemical Science, 2020, 11, 11827-11833.	7.4	19
26	Activation of Aromatic Câ^'F Bonds by a Nâ€Heterocyclic Olefin (NHO). Chemistry - A European Journal, 2020, 26, 5951-5955.	3.3	18
27	Assembly of NHC-stabilized 2-hydrophosphasilenes from Si(<scp>iv</scp>) precursors: a Lewis acid–base complex. Dalton Transactions, 2016, 45, 19290-19298.	3.3	17
28	Influence of N-Substitution on the Formation and Oxidation of NHC–CAAC-Derived Triazaalkenes. Journal of Organic Chemistry, 2019, 84, 8899-8909.	3.2	17
29	Direct access to 2-aryl substituted pyrrolinium saltsÂfor carbon centre based radicals <i>without</i> pyrrolidine-2-ylidene <i>alias</i> cyclic(alkyl)(amino)carbene (CAAC) as a precursor. Chemical Science, 2019, 10, 4077-4081.	7.4	17
30	Tethered CAAC–CAAC dimers: oxidation to persistent radical cations and bridging-unit dependent reactivity/stability of the dications. Chemical Communications, 2021, 57, 1210-1213.	4.1	16
31	Disclosing Cyclic(Alkyl)(Amino)Carbenes as Oneâ€Electron Reductants: Synthesis of Acyclic(Amino)(Aryl)Carbeneâ€Based Kekulé Diradicaloids. Chemistry - A European Journal, 2022, 28, .	3.3	13
32	Mono―and Dicoordinate Germanium(0) as a Fourâ€Electron Donor. Chemistry - A European Journal, 2018, 24, 2873-2878.	3.3	12
33	Neutral and anionic phosphate-diesters as molecular templates for the encapsulation of a water dimer. Chemical Communications, 2018, 54, 11913-11916.	4.1	12
34	Equilibrium Coordination of NHCs to Si(IV) Species and Donor Exchange in Donor–Acceptor Stabilized Si(II) and Ge(II) Compounds. Inorganic Chemistry, 2019, 58, 4071-4075.	4.0	12
35	α,α′-Diamino-p-quinodimethanes with Three Stable Oxidation States. Organic Letters, 2020, 22, 8332-8336.	4.6	12
36	<i>N</i> , <i>N′</i> â€Ethyleneâ€Bridged Bisâ€2â€Arylâ€Pyrrolinium Cations to <i>E</i> â€Diaminoalkenes: Nonâ€Identical Stepwise Reversible Doubleâ€Redox Coupled Bond Activation Reactions. Chemistry - A European Journal, 2020, 26, 4425-4431.	3.3	11

#	Article	IF	Citations
37	2,6-(Diphenylmethyl)-Aryl-Substituted Neutral and Anionic Phosphates: Approaches to H-Bonded Dimeric Molecular Structures. ChemistrySelect, 2017, 2, 8898-8910.	1.5	10
38	"Abnormal―Addition of NHC to a Conjugate Acid of CAAC: Formation of <i>N</i> â€Alkylâ€Substituted CAAC. Chemistry - A European Journal, 2018, 24, 12722-12727.	3.3	10
39	NHCâ€Coordinated Diphospheneâ€Stabilized Gold(I) Hydride and Its Reversible Conversion to Gold(I) Formate with CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 15367-15371.	13.8	10
40	Twisted Push–Pull Alkenes Bearing Geminal Cyclicdiamino and Difluoroaryl Substituents. Journal of Organic Chemistry, 2021, 86, 12683-12692.	3.2	9
41	Reactivity of NHC/diphosphene-coordinated Au(<scp>i</scp>)-hydride. Chemical Communications, 2021, 57, 809-812.	4.1	8
42	α,α′-Diamino- <i>p</i> -tetrafluoroquinodimethane: Stability of One- and Two-Electron Oxidized Species and Fixation of Molecular Oxygen. Journal of Organic Chemistry, 2021, 86, 10467-10473.	3.2	8
43	NHC-stabilized 1-hydrosilaimine: synthesis, structure and reactivity. Chemical Communications, 2017, 53, 8592-8595.	4.1	7
44	Influence of N-heterocyclic carbenes (NHCs) on the hydrolysis of a diphosphene. Dalton Transactions, 2020, 49, 993-997.	3.3	7
45	Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations. ACS Omega, 2019, 4, 2118-2133.	3.5	6
46	Diamidocarbene-Based Thiele and Tschitschibabin Hydrocarbons: Carbonyl Functionalized Kekulé Diradicaloids. Journal of Organic Chemistry, 2021, 86, 16464-16472.	3.2	6
47	Realizing 1,1â€Dehydration of Secondary Alcohols to Carbenes: Pyrrolidinâ€2â€ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
48	Trisubstituted geminal diazaalkene derived transient 1,2-carbodications. Chemical Communications, 2020, 56, 8233-8236.	4.1	5
49	CAACâ€Based Thiele and Schlenk Hydrocarbons. Angewandte Chemie, 2020, 132, 6795-6800.	2.0	5
50	Synthesis and reactivity of NHC-coordinated phosphinidene oxide. Chemical Communications, 2021, 57, 9546-9549.	4.1	5
51	Molecular enneanuclear Cu ^{II} phosphates containing planar hexanuclear and trinuclear sub-units: syntheses, structures, and magnetism. Dalton Transactions, 2020, 49, 2527-2536.	3.3	4
52	Modulation of the nuclearity of molecular Mg(<scp>ii</scp>)-phosphates: solid-state structural change involving coordinating solvents. Dalton Transactions, 2019, 48, 8853-8860.	3.3	3
53	Facile Oneâ€Pot Assembly of Push–Pull Imines by a Selective C–F Substitution Process in Aryl Fluorides. European Journal of Organic Chemistry, 2020, 2020, 7445-7449.	2.4	3
54	Molecular di- and tetra-nuclear zinc(II) phosphates with sterically hindered aryl phosphate mono esters ligands. Polyhedron, 2019, 172, 216-225.	2.2	2

#	Article	IF	CITATIONS
55	Solvent-assisted monomeric molecular structure of the phosphate diester and the synthesis of menthol-based phosphate diesters. Journal of Chemical Sciences, 2019, 131, 1.	1.5	2
56	An Air-Stable Alkene-Derived Organic Radical Cation. ACS Omega, 2022, 7, 837-843.	3.5	2
57	Reactions of 4-diphenylphosphino benzoic acid with organotin oxides and -oxy-hydroxide. Journal of Chemical Sciences, 2018, 130, 1.	1.5	1
58	Organotin Phosphates Assembled from a Sterically Hindered Organophosphate, ArOP(O)(OH) ₂ , (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (2,6-(CHPh ₂) _{Structures. Crystal Growth and Design, 2020, 20, 3034-3043.}	-2-4	1- <i>i>i-</i> Pr-C
59	Contrasting reactivity of (boryl)(aryl)lithium-amide with electrophiles: N- vs. p-aryl-C-nucleophilic substitution. Dalton Transactions, 2018, 47, 14411-14415.	3.3	0
60	NHCâ€Coordinated Diphospheneâ€Stabilized Gold(I) Hydride and Its Reversible Conversion to Gold(I) Formate with CO 2. Angewandte Chemie, 2019, 131, 15511-15515.	2.0	0
61	Coordination of N-heterocyclic carbene to Si–Si and P–P multiple bonded compounds. , 2021, , 393-429.		0
62	Activation of O ₂ across a C(sp ³)–C(sp ³) bond. Chemical Communications, 2022, 58, 3122-3125.	4.1	0
63	Realizing the 1,1â€Dehydration of Secondary Alcohols to Carbenes: Pyrrolidinâ€2â€ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angewandte Chemie, 0, , .	2.0	0
64	Frontispiece: Realizing 1,1â€Dehydration of Secondary Alcohols to Carbenes: Pyrrolidinâ€2â€ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
65	Frontispiz: Realizing 1,1â€Dehydration of Secondary Alcohols to Carbenes: Pyrrolidinâ€2â€ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angewandte Chemie, 2022, 134, .	2.0	0