
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3188011/publications.pdf Version: 2024-02-01



WHA-SELING AHN

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials.<br>Microporous and Mesoporous Materials, 2008, 113, 31-40.                                                           | 4.4  | 532       |
| 2  | Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 2013, 30, 1667-1680.                                                                                                    | 2.7  | 487       |
| 3  | CO <sub>2</sub> capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy and Environmental Science, 2012, 5, 6465-6473.                                                                       | 30.8 | 463       |
| 4  | ZIF-8: A comparison of synthesis methods. Chemical Engineering Journal, 2015, 271, 276-280.                                                                                                                           | 12.7 | 462       |
| 5  | Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catalysis Today, 2013, 204, 85-93.                                                                                                                        | 4.4  | 406       |
| 6  | Sonochemical synthesis of MOF-5. Chemical Communications, 2008, , 6336.                                                                                                                                               | 4.1  | 388       |
| 7  | CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 2013, 453, 175-180.                                                                                                              | 4.3  | 359       |
| 8  | Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications, 2009, , 3627.                                                                     | 4.1  | 301       |
| 9  | CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catalysis<br>Today, 2012, 185, 35-40.                                                                                         | 4.4  | 290       |
| 10 | Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered.<br>Microporous and Mesoporous Materials, 2008, 116, 727-731.                                                                   | 4.4  | 285       |
| 11 | Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous<br>catalysis. Journal of Materials Chemistry A, 2016, 4, 16288-16311.                                                   | 10.3 | 271       |
| 12 | Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its<br>effect on CO2 adsorption. Journal of Materials Chemistry, 2011, 21, 3070.                                             | 6.7  | 225       |
| 13 | Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Advances, 2014, 4, 52500-52525.                                              | 3.6  | 217       |
| 14 | MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using<br>Peroxides. ACS Catalysis, 2011, 1, 901-907.                                                                           | 11.2 | 206       |
| 15 | High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous<br>Materials, 2013, 169, 180-184.                                                                                        | 4.4  | 199       |
| 16 | Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for<br>Dehydrogenation of Formic Acid at Ambient Temperature. Journal of Physical Chemistry C, 2013, 117,<br>22805-22810. | 3.1  | 188       |
| 17 | CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions.<br>Microporous and Mesoporous Materials, 2010, 135, 90-94.                                                                  | 4.4  | 170       |
| 18 | Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chemical<br>Engineering Journal, 2010, 161, 46-52.                                                                                   | 12.7 | 161       |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Microporous covalent triazine polymers: efficient Friedel–Crafts synthesis and adsorption/storage of CO <sub>2</sub> and CH <sub>4</sub> . Journal of Materials Chemistry A, 2015, 3, 6792-6797. | 10.3 | 160       |
| 20 | Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101. ACS Applied Materials & amp; Interfaces, 2018, 10, 23918-23927.                                                      | 8.0  | 160       |
| 21 | Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Advances, 2012, 2, 10179.                                                                            | 3.6  | 159       |
| 22 | CO2 capture by amine-functionalized nanoporous materials: A review. Korean Journal of Chemical Engineering, 2014, 31, 1919-1934.                                                                 | 2.7  | 148       |
| 23 | Amine–silica composites for CO2 capture: A short review. Journal of Energy Chemistry, 2017, 26,<br>868-880.                                                                                      | 12.9 | 145       |
| 24 | Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review.<br>Chemical Engineering Journal, 2017, 317, 821-843.                                         | 12.7 | 143       |
| 25 | EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018, 67, 210-218.                         | 5.8  | 143       |
| 26 | CO2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 2014, 292, 63-67.                                                                                                | 6.1  | 136       |
| 27 | Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. Journal of Porous Materials, 2009, 16, 545-551.                                        | 2.6  | 135       |
| 28 | A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of<br>IRMOF-3 with a manganese(ii) acetylacetonate complex. Chemical Communications, 2011, 47, 3637. | 4.1  | 133       |
| 29 | Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption. Chemical Engineering Journal, 2017, 319, 65-74.                                             | 12.7 | 123       |
| 30 | Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications.<br>Catalysis Surveys From Asia, 2014, 18, 101-127.                                         | 2.6  | 119       |
| 31 | Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore<br>structure. Fuel, 2012, 95, 360-364.                                                         | 6.4  | 118       |
| 32 | Enhanced adsorptive removal of fluoride using mesoporous alumina. Microporous and Mesoporous<br>Materials, 2010, 127, 152-156.                                                                   | 4.4  | 116       |
| 33 | CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr2-grafted N-heterocyclic carbene-based aromatic polymer. Applied Catalysis B: Environmental, 2019, 251, 195-205.          | 20.2 | 112       |
| 34 | Covalent triazine polymers using a cyanuric chloride precursor via Friedel–Crafts reaction for CO2<br>adsorption/separation. Chemical Engineering Journal, 2016, 283, 184-192.                   | 12.7 | 102       |
| 35 | Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod<br>topology: Structure and ion-exchange effect. Chemical Engineering Journal, 2011, 168, 1134-1139.    | 12.7 | 101       |
| 36 | Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. CrystEngComm, 2012, 14, 4142.                                                         | 2.6  | 94        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Porous Covalent Triazine Polymer as a Potential Nanocargo for Cancer Therapy and Imaging. ACS<br>Applied Materials & Interfaces, 2016, 8, 8947-8955.                                                                                                  | 8.0  | 87        |
| 38 | Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: a study on removal of Hg( <scp>ii</scp> ) from water and epoxidation of alkenes. CrystEngComm, 2015, 17, 2575-2582.                                                      | 2.6  | 85        |
| 39 | Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis.<br>Catalysis Today, 2015, 245, 54-60.                                                                                                              | 4.4  | 76        |
| 40 | Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous and Mesoporous Materials, 2012, 161, 48-55.                                                                         | 4.4  | 74        |
| 41 | Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous and<br>Mesoporous Materials, 2008, 111, 455-462.                                                                                                         | 4.4  | 73        |
| 42 | Highly active palladium nanoparticles immobilized on NH2-MIL-125 as efficient and recyclable catalysts for Suzuki–Miyaura cross coupling reaction. Catalysis Communications, 2015, 65, 91-95.                                                         | 3.3  | 73        |
| 43 | Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 2018, 154, 343-349.                                                                                                                                                            | 2.2  | 73        |
| 44 | One-pot catalytic transformation of olefins into cyclic carbonates over an imidazolium<br>bromide-functionalized Mn(III)-porphyrin metal–organic framework. Applied Catalysis B:<br>Environmental, 2020, 273, 119059.                                 | 20.2 | 73        |
| 45 | Aminoethanethiol-Grafted Porous Organic Polymer for Hg <sup>2+</sup> Removal in Aqueous<br>Solution. Industrial & Engineering Chemistry Research, 2017, 56, 10174-10182.                                                                              | 3.7  | 69        |
| 46 | Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 2020, 250, 126133.                                                                                                    | 8.2  | 68        |
| 47 | Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture.<br>Applied Surface Science, 2015, 332, 167-171.                                                                                                          | 6.1  | 67        |
| 48 | Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites.<br>Frontiers in Chemistry, 2019, 7, 514.                                                                                                                  | 3.6  | 67        |
| 49 | Hydroxylamine-Anchored Covalent Aromatic Polymer for CO <sub>2</sub> Adsorption and Fixation into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2018, 6, 9324-9332.                                                                   | 6.7  | 66        |
| 50 | Amine-Functionalized Metal–Organic Frameworks and Covalent Organic Polymers as Potential<br>Sorbents for Removal of Formaldehyde in Aqueous Phase: Experimental Versus Theoretical Study. ACS<br>Applied Materials & Interfaces, 2019, 11, 1426-1439. | 8.0  | 65        |
| 51 | Microwave preparation of a titanium-substituted mesoporous molecular sieve. Catalysis Letters, 1999, 59, 45-49.                                                                                                                                       | 2.6  | 64        |
| 52 | A new site-isolated acid–base bifunctional metal–organic framework for one-pot tandem reaction.<br>RSC Advances, 2014, 4, 23064.                                                                                                                      | 3.6  | 61        |
| 53 | Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 2021, 316, 110985.                                                                      | 4.4  | 61        |
| 54 | CO <sub>2</sub> Capture by Porous Hyper-Cross-Linked Aromatic Polymers Synthesized Using<br>Tetrahedral Precursors. Industrial & Engineering Chemistry Research, 2016, 55, 7917-7923.                                                                 | 3.7  | 60        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | lonic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chemical Engineering<br>Journal, 2019, 370, 792-799.                                                                                                                                                    | 12.7 | 60        |
| 56 | Amine-functionalized MIL-53(Al) for CO2/N2 separation: Effect of textural properties. Fuel, 2012, 102, 574-579.                                                                                                                                                                         | 6.4  | 58        |
| 57 | Friedel–Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates. Catalysis Letters, 2014, 144, 817-824.                                                                                                                                                                   | 2.6  | 57        |
| 58 | Adsorption properties of advanced functional materials against gaseous formaldehyde.<br>Environmental Research, 2019, 178, 108672.                                                                                                                                                      | 7.5  | 57        |
| 59 | Catalytic transfer hydrogenation of bio-based furfural by palladium supported on nitrogen-doped porous carbon. Catalysis Today, 2019, 324, 49-58.                                                                                                                                       | 4.4  | 56        |
| 60 | Oxygenâ€Deficient NiFe <sub>2</sub> O <sub>4</sub> Spinel Nanoparticles as an Enhanced<br>Electrocatalyst for the Oxygen Evolution Reaction. ChemNanoMat, 2019, 5, 1296-1302.                                                                                                           | 2.8  | 55        |
| 61 | Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC. Catalysis<br>Surveys From Asia, 2012, 16, 106-119.                                                                                                                                                  | 2.6  | 54        |
| 62 | Mesoporous SAPO-34 with amine-grafting for CO2 capture. Fuel, 2013, 108, 515-520.                                                                                                                                                                                                       | 6.4  | 54        |
| 63 | Synthesis of AlPO4-5 and CrAPO-5 using aluminum dross. Journal of Hazardous Materials, 2009, 169, 919-925.                                                                                                                                                                              | 12.4 | 51        |
| 64 | Poly(amidoamine) dendrimer immobilized on mesoporous silica foam (MSF) and fibrous nano-silica<br>KCC-1 for Gd3+ adsorption in water. Chemical Engineering Journal, 2019, 378, 122133.                                                                                                  | 12.7 | 50        |
| 65 | Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: an efficient and reusable catalyst for O-arylation reaction. Catalysis Science and Technology, 2016, 6, 1701-1709.                                                                              | 4.1  | 49        |
| 66 | Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catalysis Today, 2018, 303, 227-234.                                                                                                                      | 4.4  | 49        |
| 67 | Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from <i>Herba Artemisiae Scopariae</i> . Journal of Separation Science, 2016, 39, 4465-4473. | 2.5  | 48        |
| 68 | Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh<br>Nanoparticles Embedded on Diamineâ€Functionalized KITâ€6. ChemCatChem, 2017, 9, 4570-4579.                                                                                                   | 3.7  | 47        |
| 69 | Ti-MCM-36: a new mesoporous epoxidation catalyst. Catalysis Letters, 2007, 113, 160-164.                                                                                                                                                                                                | 2.6  | 46        |
| 70 | Cyclic carbonate synthesis from CO2 and epoxides over diamine-functionalized porous organic frameworks. Journal of CO2 Utilization, 2017, 21, 450-458.                                                                                                                                  | 6.8  | 46        |
| 71 | CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catalysis Today, 2012, 190, 15-22.                                                                                                                                      | 4.4  | 43        |
| 72 | High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity. Electrochimica Acta, 2018, 284, 98-107.                                                                                                                 | 5.2  | 43        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Metal–Organic Frameworks for Catalysis. Catalysis Surveys From Asia, 2015, 19, 203-222.                                                                                                                        | 2.6 | 42        |
| 74 | Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution. Microporous and Mesoporous Materials, 2018, 258, 62-71.                                | 4.4 | 42        |
| 75 | Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 26-32.                                                                         | 5.9 | 42        |
| 76 | Preparation and Application of Porous Materials based on Deep Eutectic Solvents. Critical Reviews in<br>Analytical Chemistry, 2018, 48, 73-85.                                                                 | 3.5 | 41        |
| 77 | Gd <sup>3+</sup> Adsorption over Carboxylic- and Amino-Group Dual-Functionalized UiO-66.<br>Industrial & Engineering Chemistry Research, 2019, 58, 2324-2332.                                                  | 3.7 | 41        |
| 78 | Porous Covalent Organic Polymers Comprising a Phosphite Skeleton for Aqueous Nd(III) Capture. ACS<br>Applied Materials & Interfaces, 2019, 11, 11488-11497.                                                    | 8.0 | 41        |
| 79 | Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. Chemosphere, 2021, 265, 129161.                                                                                                   | 8.2 | 39        |
| 80 | Electrochemical determination of quercetin based on porous aromatic frameworks supported Au<br>nanoparticles. Electrochimica Acta, 2016, 216, 181-187.                                                         | 5.2 | 38        |
| 81 | Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity. Journal of Power Sources, 2018, 389, 20-27.                                                  | 7.8 | 38        |
| 82 | MgFeAl layered double hydroxide prepared from recycled industrial solid wastes for CO2 fixation by cycloaddition to epoxides. Journal of CO2 Utilization, 2019, 34, 395-403.                                   | 6.8 | 37        |
| 83 | Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures. Environmental Research, 2019, 173, 1-11.                     | 7.5 | 37        |
| 84 | Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions.<br>Microporous and Mesoporous Materials, 2020, 296, 109979.                                                     | 4.4 | 37        |
| 85 | Triphenylamine-based covalent imine framework for CO2 capture and catalytic conversion into cyclic carbonates. Microporous and Mesoporous Materials, 2020, 297, 110011.                                        | 4.4 | 36        |
| 86 | Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption. Korean Journal of Chemical Engineering, 2010, 27, 1010-1014.                                                              | 2.7 | 35        |
| 87 | Chabazite and zeolite 13X for CO2 capture under high pressure and moderate temperature conditions.<br>Chemical Communications, 2014, 50, 4927.                                                                 | 4.1 | 35        |
| 88 | Porous NH2-MIL-125 as an efficient nano-platform for drug delivery, imaging, and ROS therapy utilized<br>Low-Intensity Visible light exposure system. Colloids and Surfaces B: Biointerfaces, 2017, 160, 1-10. | 5.0 | 34        |
| 89 | Aqueous adsorption of sulfamethoxazole on an N-doped zeolite beta-templated carbon. Journal of<br>Colloid and Interface Science, 2021, 582, 467-477.                                                           | 9.4 | 33        |
| 90 | Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal.<br>Microporous and Mesoporous Materials, 2018, 271, 59-67.                                                  | 4.4 | 32        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Minimizing energy demand and environmental impact for sustainable NH3 and H2O2 production—A perspective on contributions from thermal, electro-, and photo-catalysis. Applied Catalysis A: General, 2020, 594, 117419.  | 4.3  | 32        |
| 92  | Zeolite-Like Metal Organic Framework (ZMOF) with a <i>rho</i> Topology for a CO <sub>2</sub><br>Cycloaddition to Epoxides. ACS Sustainable Chemistry and Engineering, 2020, 8, 7078-7086.                               | 6.7  | 32        |
| 93  | Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. Korean Journal of Chemical Engineering, 2021, 38, 653-673.                                                         | 2.7  | 32        |
| 94  | Synthesis of a sulfonato-salen-nickel(ii) complex immobilized in LDH for tetralinoxidation. New<br>Journal of Chemistry, 2010, 34, 156-162.                                                                             | 2.8  | 30        |
| 95  | Ethylenediamine grafting on a zeolite-like metal organic framework (ZMOF) for CO2 capture.<br>Materials Letters, 2013, 106, 344-347.                                                                                    | 2.6  | 30        |
| 96  | Catalytic dehydrogenation of formic acid over palladium nanoparticles immobilized on fibrous mesoporous silica KCC-1. Chinese Journal of Catalysis, 2019, 40, 1704-1712.                                                | 14.0 | 30        |
| 97  | Calcium oxide as high temperature CO2 sorbent: Effect of textural properties. Materials Letters, 2012, 75, 140-142.                                                                                                     | 2.6  | 29        |
| 98  | Covalent Triazine Polymer–Fe <sub>3</sub> O <sub>4</sub> Nanocomposite for Strontium Ion Removal from Seawater. Industrial & Engineering Chemistry Research, 2017, 56, 4984-4992.                                       | 3.7  | 29        |
| 99  | Diphenylmethane synthesis using ionic liquids as lewis acid catalyst. Korean Journal of Chemical<br>Engineering, 2003, 20, 39-43.                                                                                       | 2.7  | 28        |
| 100 | Ullmann coupling of aryl chlorides in water catalyzed by palladium nanoparticles supported on amine-grafted porous aromatic polymer. Molecular Catalysis, 2017, 437, 73-79.                                             | 2.0  | 28        |
| 101 | Co- and Mn-Coimpregnated ZSM-5 Prepared from Recycled Industrial Solid Wastes for<br>Low-Temperature NH <sub>3</sub> -SCR. Industrial & Engineering Chemistry Research, 2019, 58,<br>22857-22865.                       | 3.7  | 28        |
| 102 | Tetralin oxidation over chromium-containing molecular sieve catalysts. Catalysis Today, 2008, 132, 52-57.                                                                                                               | 4.4  | 27        |
| 103 | CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone. New Journal of Chemistry, 2010, 34, 2971.                                                                | 2.8  | 26        |
| 104 | <scp>CO<sub>2</sub></scp> Capture and Ca <sup>2+</sup> Exchange Using Zeolite A and<br><scp>13X</scp> Prepared from Power Plant Fly Ash. Bulletin of the Korean Chemical Society, 2016, 37,<br>490-493.                 | 1.9  | 26        |
| 105 | Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption. Journal of<br>Industrial and Engineering Chemistry, 2019, 72, 241-249.                                                             | 5.8  | 25        |
| 106 | Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route.<br>Microporous and Mesoporous Materials, 2015, 213, 161-168.                                                                | 4.4  | 23        |
| 107 | Cycloaddition of CO2 and epoxides over a porous covalent triazine-based polymer incorporated with<br>Fe3O4. New Journal of Chemistry, 2018, 42, 12429-12436.                                                            | 2.8  | 23        |
| 108 | Application of Zr-Cluster-Based MOFs for the Adsorptive Removal of Aliphatic Aldehydes<br>(C <sub>1</sub> to C <sub>5</sub> ) from an Industrial Solvent. ACS Applied Materials & Interfaces,<br>2019, 11, 44270-44281. | 8.0  | 23        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synthesis of cubic mesoporous silica and carbon using fly ash. Journal of Non-Crystalline Solids, 2008, 354, 4027-4030.                                                                                                                 | 3.1 | 22        |
| 110 | Ti-MWW Synthesis and Catalytic Applications in Partial Oxidation Reactions. Topics in Catalysis, 2010, 53, 470-478.                                                                                                                     | 2.8 | 21        |
| 111 | Dual-functionalized porous organic polymer as reusable catalyst for one-pot cascade C C bond-forming reactions. Molecular Catalysis, 2017, 441, 1-9.                                                                                    | 2.0 | 20        |
| 112 | Metal-free oxidative desulfurization over a microporous triazine polymer catalyst under ambient conditions. Fuel Processing Technology, 2020, 207, 106469.                                                                              | 7.2 | 20        |
| 113 | Cascade Knoevenagel condensation-chemoselective transfer hydrogenation catalyzed by Pd<br>nanoparticles stabilized on amine-functionalized aromatic porous polymer. Catalysis Today, 2020, 352,<br>298-307.                             | 4.4 | 19        |
| 114 | Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer. Applied Catalysis A: General, 2020, 602, 117711. | 4.3 | 19        |
| 115 | Amine-functionalized microporous covalent organic polymers for adsorptive removal of a gaseous aliphatic aldehyde mixture. Environmental Science: Nano, 2020, 7, 3447-3468.                                                             | 4.3 | 18        |
| 116 | Metal-free aerobic oxidative desulfurization over a diethyltriamine-functionalized aromatic porous polymer. Fuel Processing Technology, 2021, 215, 106741.                                                                              | 7.2 | 18        |
| 117 | Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8. Journal of Colloid and Interface Science, 2021, 594, 702-712.                                                                                    | 9.4 | 18        |
| 118 | Synthesis, characterization, and applications of organic-inorganic hybrid mesoporous silica. Korean<br>Journal of Chemical Engineering, 2004, 21, 132-139.                                                                              | 2.7 | 17        |
| 119 | Heteroatom-doped porous carbon electrodes derived from a carbonyl-based aromatic porous polymer for supercapacitors. Synthetic Metals, 2018, 243, 115-120.                                                                              | 3.9 | 17        |
| 120 | CO2 cycloaddition to epichlorohydrin over an aluminum fumarate metal-organic framework synthesized by a sonochemical route. Microporous and Mesoporous Materials, 2020, 306, 110432.                                                    | 4.4 | 17        |
| 121 | Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework<br>(CuBTC). Catalysis Letters, 2021, 151, 2011-2018.                                                                                            | 2.6 | 16        |
| 122 | Electrocatalytic oxygen reduction over Co@Co3O4/N-doped porous carbon derived from pyrolysis of ZIF-8/67 on cellulose nanofibers. Cellulose, 2020, 27, 2723-2735.                                                                       | 4.9 | 15        |
| 123 | Effects of polydimethylsiloxane coating of Ni-MOF-74 on CH4 storage. Korean Journal of Chemical<br>Engineering, 2018, 35, 1542-1546.                                                                                                    | 2.7 | 14        |
| 124 | Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2:<br>Contribution by enhanced H2 storage capacity. Journal of Industrial and Engineering Chemistry, 2020,<br>81, 375-384.                     | 5.8 | 14        |
| 125 | Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pdâ€supported Metalâ€Organic<br>Framework Catalysts. Bulletin of the Korean Chemical Society, 2015, 36, 1378-1383.                                                  | 1.9 | 13        |
| 126 | Ti-MIL-125-NH <sub>2</sub> membrane grown on a TiO <sub>2</sub> disc by combined<br>microwave/ultrasonic heating: facile synthesis for catalytic application. RSC Advances, 2016, 6,<br>63286-63290.                                    | 3.6 | 13        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The effects of continuous- and stop-flow gas streams on adsorptive removal of benzene vapor using type – II covalent organic polymers. Environmental Research, 2020, 182, 109043.                  | 7.5 | 13        |
| 128 | <scp>CO<sub>2</sub></scp> Cycloaddition of Epichlorohydrin over<br><scp>NH<sub>2</sub></scp> â€Functionalized <scp>MIL</scp> â€101. Bulletin of the Korean Chemical<br>Society, 2015, 36, 363-366. | 1.9 | 12        |
| 129 | An investigation on the selective hydrodealkylation of C <sub>9</sub> <sup>+</sup> aromatics over alkali-treated Pt/H-ZSM-5 zeolites. Catalysis Science and Technology, 2016, 6, 5599-5607.        | 4.1 | 12        |
| 130 | Pd(II)-immobilized on a nanoporous triazine-based covalent imine framework for facile cyanation of haloarenes with K4Fe(CN)6. Molecular Catalysis, 2019, 473, 110395.                              | 2.0 | 12        |
| 131 | Morphology control of MSU-1 silica particles. Journal of Non-Crystalline Solids, 2008, 354, 1-9.                                                                                                   | 3.1 | 10        |
| 132 | Title is missing!. Reaction Kinetics and Catalysis Letters, 2000, 71, 273-279.                                                                                                                     | 0.6 | 8         |
| 133 | Physicochemical properties of Ti-grafted SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 82, 27-32.                                                                                         | 0.6 | 8         |
| 134 | Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology. Colloid and Polymer Science, 2013, 291, 1895-1901.                                                                          | 2.1 | 8         |
| 135 | Nanoporous Fe-MCM-22 Additive Effect on Magnetorheological Response of Magnetic Carbonyl Iron<br>Suspension. IEEE Transactions on Magnetics, 2013, 49, 3410-3413.                                  | 2.1 | 8         |
| 136 | Synthesis gas production process for natural gas conversion over Ni–La2O3 catalyst. Journal of<br>Industrial and Engineering Chemistry, 2015, 28, 229-235.                                         | 5.8 | 8         |
| 137 | SYNTHESIS AND ELECTRORHEOLOGY OF MESOPOROUS PARTICLS SUSPENSIONS. International Journal of Modern Physics B, 2002, 16, 2514-2520.                                                                  | 2.0 | 7         |
| 138 | Preparation and humidity-sensing properties of nanostructured potassium tantalate thin films.<br>Journal of Materials Science: Materials in Electronics, 2004, 15, 25-28.                          | 2.2 | 7         |
| 139 | Hydrothermal synthesis of zeolite L in a Na+/K+ mixed alkali system. Korean Journal of Chemical<br>Engineering, 2008, 25, 1546-1552.                                                               | 2.7 | 7         |
| 140 | Facile synthesis of Ti-TUD-1 for catalytic oxidative desulfurization of model sulfur compounds.<br>Research on Chemical Intermediates, 2011, 37, 1267-1273.                                        | 2.7 | 7         |
| 141 | Sonochemical synthesis of rho-ZMOF catalyst for an enhanced CO2 cycloaddition reaction. Materials<br>Letters, 2020, 277, 128387.                                                                   | 2.6 | 7         |
| 142 | Extensions in the synthesis and catalytic application of titanium silicalite-1. Catalysis Surveys From Asia, 2005, 9, 51-60.                                                                       | 2.6 | 6         |
| 143 | Hydrothermal synthesis and characterization of Fe(III)-substituted mordenites. Korean Journal of Chemical Engineering, 2008, 25, 1286-1291.                                                        | 2.7 | 6         |
| 144 | Synthesis of hexagonal mesoporous aluminophosphate using Al dross. Korean Journal of Chemical<br>Engineering, 2009, 26, 1389-1394.                                                                 | 2.7 | 6         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis of organic–inorganic hybrid MSU-1 for separation and catalytic applications. Microporous and Mesoporous Materials, 2010, 132, 232-238.                                                   | 4.4 | 6         |
| 146 | Oxidation of tetralin to 1-tetralone over CrAPO-5. Korean Journal of Chemical Engineering, 2017, 34, 701-705.                                                                                      | 2.7 | 5         |
| 147 | Electrorheological response of microporous covalent triazine-based polymeric particles. Colloid and Polymer Science, 2018, 296, 907-915.                                                           | 2.1 | 5         |
| 148 | Electroresponsive Polymer–Inorganic Semiconducting Composite<br>(MCTP–Fe <sub>3</sub> O <sub>4</sub> ) Particles and Their Electrorheology. ACS Omega, 2018, 3,<br>17246-17253.                    | 3.5 | 5         |
| 149 | Humidity sensing properties of nanostructured- bilayered potassium tantalate: Titania films. Journal of Materials Science: Materials in Electronics, 2005, 16, 517-521.                            | 2.2 | 4         |
| 150 | Phase transition of mesoporous SiO2 impregnated with an organic templating agent by post-synthetic microwave heating. Journal of Porous Materials, 2008, 15, 93-99.                                | 2.6 | 4         |
| 151 | Hydrothermal conversion of ETS-10 to TS-1. Journal of Porous Materials, 2011, 18, 133-138.                                                                                                         | 2.6 | 4         |
| 152 | Sodium silicate insulating foam reinforced with acid-treated fly ash. Materials Letters, 2018, 218, 56-59.                                                                                         | 2.6 | 3         |
| 153 | A study of intramolecular electron exchange in copper-radical complexes involved in catalysis using ESR spectroscopy. Korean Journal of Chemical Engineering, 1997, 14, 394-398.                   | 2.7 | 2         |
| 154 | Mathematical model of a monolith catalytic incinerator. Korean Journal of Chemical Engineering, 1999, 16, 778-783.                                                                                 | 2.7 | 2         |
| 155 | Effects of Adsorption Mechanisms on the Efficiency of ASC Whetlerite Carbon Reactor. Adsorption, 2002, 8, 189-195.                                                                                 | 3.0 | 1         |
| 156 | Fabrication of macroporous carbon foam using glycol-derivatives as liquid templates.<br>Macromolecular Research, 2016, 24, 240-248.                                                                | 2.4 | 1         |
| 157 | Extrapolation of the Clausius-Clapeyron plot for estimating the CO2 adsorption capacities of zeolites at moderate temperature conditions. Korean Journal of Chemical Engineering, 2017, 34, 37-40. | 2.7 | 1         |
| 158 | Biphasic synthesis of α-Tetralone using nickel complex catalysts. Korean Journal of Chemical<br>Engineering, 1998, 15, 527-532.                                                                    | 2.7 | 0         |
| 159 | SYNTHESIS AND ELECTRORHEOLOGY OF MESOPOROUS PARTICLE SUSPENSIONS. , 2002, , .                                                                                                                      |     | 0         |
| 160 | 10.2478/s11814-009-0192-9., 2011, 26, 1389.                                                                                                                                                        |     | 0         |