Martha L Slattery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3187951/publications.pdf Version: 2024-02-01

319 papers	19,382 citations	8755 75 h-index	18647 119 g-index
321	321	321	19727
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Poor Survival Associated with the BRAF V600E Mutation in Microsatellite-Stable Colon Cancers. Cancer Research, 2005, 65, 6063-6069.	0.9	701
2	Colon Cancer: A Review of the Epidemiology. Epidemiologic Reviews, 1993, 15, 499-545.	3.5	694
3	Evaluation of a Large, Population-Based Sample Supports a CpG Island Methylator Phenotype in Colon Cancer. Gastroenterology, 2005, 129, 837-845.	1.3	526
4	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
5	Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology, 2013, 144, 799-807.e24.	1.3	292
6	Associations Between Cigarette Smoking, Lifestyle Factors, and Microsatellite Instability in Colon Tumors. Journal of the National Cancer Institute, 2000, 92, 1831-1836.	6.3	291
7	Carotenoids and colon cancer. American Journal of Clinical Nutrition, 2000, 71, 575-582.	4.7	257
8	Association of Smoking, CpG Island Methylator Phenotype, and V600E BRAF Mutations in Colon Cancer. Journal of the National Cancer Institute, 2006, 98, 1731-1738.	6.3	253
9	The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterology, 2001, 121, 830-838.	1.3	236
10	Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology, 2018, 154, 2152-2164.e19.	1.3	226
11	Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nature Genetics, 2014, 46, 533-542.	21.4	212
12	Colorectal Cancer Risk Prediction Tool for White Men and Women Without Known Susceptibility. Journal of Clinical Oncology, 2009, 27, 686-693.	1.6	209
13	Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nature Communications, 2020, 11, 597.	12.8	193
14	DIETARY INTAKE AND COLON CANCER: SEX- AND ANATOMIC SITE-SPECIFIC ASSOCIATIONS. American Journal of Epidemiology, 1989, 130, 883-894.	3.4	191
15	Family History of Cancer and Colon Cancer Risk: the Utah Population Database. Journal of the National Cancer Institute, 1994, 86, 1618-1626.	6.3	187
16	Meta-analysis of new genome-wide association studies of colorectal cancer risk. Human Genetics, 2012, 131, 217-234.	3.8	183
17	Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes and Control, 2000, 11, 459-466.	1.8	181
18	Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. International Journal of Cancer, 2007, 120, 656-663	5.1	177

#	Article	IF	CITATIONS
19	Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology, 2004, 127, 444-451.	1.3	176
20	Association of Aspirin and NSAID Use With Risk of Colorectal Cancer According to Genetic Variants. JAMA - Journal of the American Medical Association, 2015, 313, 1133.	7.4	171
21	Inverse Relationship between Microsatellite Instability and K-ras and p53 Gene Alterations in Colon Cancer. American Journal of Pathology, 2001, 158, 1517-1524.	3.8	169
22	JAK/STAT/SOCSâ€signaling pathway and colon and rectal cancer. Molecular Carcinogenesis, 2013, 52, 155-166.	2.7	169
23	Dietary Patterns and Breast Cancer Recurrence and Survival Among Women With Early-Stage Breast Cancer. Journal of Clinical Oncology, 2009, 27, 919-926.	1.6	168
24	Physical Activity and Colorectal Cancer. Sports Medicine, 2004, 34, 239-252.	6.5	156
25	Hormone replacement therapy, reproductive history, and colon cancer: a multicenter, case-control study in the United States. Cancer Causes and Control, 1997, 8, 146-158.	1.8	154
26	Response rates among control subjects in case-control studiesâ~†. Annals of Epidemiology, 1995, 5, 245-249.	1.9	151
27	Objective System for Interviewer Performance Evaluation for Use in Epidemiologic Studies. American Journal of Epidemiology, 1994, 140, 1020-1028.	3.4	142
28	Dietary calcium, vitamin D,VDR genotypes and colorectal cancer. International Journal of Cancer, 2004, 111, 750-756.	5.1	142
29	Characterization of Gene–Environment Interactions for Colorectal Cancer Susceptibility Loci. Cancer Research, 2012, 72, 2036-2044.	0.9	140
30	Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Communications, 2015, 6, 7138.	12.8	138
31	Diet patterns and breast cancer risk in Hispanic and non-Hispanic white women: the Four-Corners Breast Cancer Study. American Journal of Clinical Nutrition, 2008, 87, 978-984.	4.7	136
32	APC Mutations and Other Genetic and Epigenetic Changes in Colon Cancer. Molecular Cancer Research, 2007, 5, 165-170.	3.4	134
33	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	1.3	129
34	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
35	Body size, weight change, fat distribution and breast cancer risk in Hispanic and non-Hispanic white women. Breast Cancer Research and Treatment, 2007, 102, 85-101.	2.5	126
36	Calcium and colon cancer: A review. Nutrition and Cancer, 1988, 11, 135-145.	2.0	125

#	Article	IF	CITATIONS
37	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	6.2	124
38	A computerized diet history questionnaire for epidemiologic studies. Journal of the American Dietetic Association, 1994, 94, 761-766.	1.1	121
39	Physical activity and colon cancer: confounding or interaction?. Medicine and Science in Sports and Exercise, 2002, 34, 913-919.	0.4	121
40	Prognostic significance ofp53 mutations in colon cancer at the population level. International Journal of Cancer, 2002, 99, 597-602.	5.1	121
41	Diet Composition and Risk of Overweight and Obesity in Women Living in the Southwestern United States. Journal of the American Dietetic Association, 2007, 107, 1311-1321.	1.1	121
42	MicroRNAs and colon and rectal cancer: Differential expression by tumor location and subtype. Genes Chromosomes and Cancer, 2011, 50, 196-206.	2.8	121
43	An evaluation and replication of mi <scp>RNA</scp> s with disease stage and colorectal cancerâ€specific mortality. International Journal of Cancer, 2015, 137, 428-438.	5.1	119
44	Physical activity and colon cancer: A public health perspective. Annals of Epidemiology, 1997, 7, 137-145.	1.9	118
45	A Comparison of Colon and Rectal Somatic DNA Alterations. Diseases of the Colon and Rectum, 2009, 52, 1304-1311.	1.3	118
46	Estimating the heritability of colorectal cancer. Human Molecular Genetics, 2014, 23, 3898-3905.	2.9	114
47	The effect of nutritional factors on sex hormone levels in male twins. Genetic Epidemiology, 1988, 5, 43-59.	1.3	111
48	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	1.3	110
49	Polymorphisms in the Reduced Folate Carrier, Thymidylate Synthase, or Methionine Synthase and Risk of Colon Cancer. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2509-2516.	2.5	108
50	MTHFR C677T and A1298C Polymorphisms. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 285-292.	2.5	107
51	MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression. Carcinogenesis, 2016, 37, 245-261.	2.8	107
52	Assessment of ability to recall physical activity of several years ago. Annals of Epidemiology, 1995, 5, 292-296.	1.9	106
53	CpG Island Methylation in Colorectal Cancer: Past, Present and Future. Pathology Research International, 2011, 2011, 1-8.	1.4	105
54	Variants of the VDR gene and risk of colon cancer (United States). Cancer Causes and Control, 2001, 12, 359-364.	1.8	103

#	Article	IF	CITATIONS
55	IL6 genotypes and colon and rectal cancer. Cancer Causes and Control, 2007, 18, 1095-1105.	1.8	98
56	MAP kinase genes and colon and rectal cancer. Carcinogenesis, 2012, 33, 2398-2408.	2.8	98
57	Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology, 2016, 150, 1633-1645.	1.3	97
58	Plant foods and colon cancer: an assessment of specific foods and their related nutrients (United) Tj ETQq0 0 0 r	gBT /Over 1.8	lock 10 Tf 50
59	Interferon-signaling pathway: associations with colon and rectal cancer risk and subsequent survival. Carcinogenesis, 2011, 32, 1660-1667.	2.8	91
60	Tollâ€like receptor genes and their association with colon and rectal cancer development and prognosis. International Journal of Cancer, 2012, 130, 2974-2980.	5.1	91
61	Diet and Colon Cancer: Assessment of Risk by Fiber Type and Food Source. Journal of the National Cancer Institute, 1988, 80, 1474-1480.	6.3	90
62	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	1.3	90
63	Fluid intake and bladder cancer in UTAH. International Journal of Cancer, 1988, 42, 17-22.	5.1	89
64	Metaâ€analysis of 16 studies of the association of alcohol with colorectal cancer. International Journal of Cancer, 2020, 146, 861-873.	5.1	89
65	Associations between <i>ERα, ERβ</i> , and <i>AR</i> Genotypes and Colon and Rectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2936-2942.	2.5	88
66	Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR , PTEN , STK11 , RPKAA1 , PRKAG2 , TSC1 , TSC2 , PI3K and Akt1. Carcinogenesis, 2010, 31, 1604-1611.	2.8	88
67	Plant foods, fiber, and rectal cancer. American Journal of Clinical Nutrition, 2004, 79, 274-281.	4.7	87
68	Tobacco use and colon cancer. , 1997, 70, 259-264.		86
69	Trans-Fatty Acids and Colon Cancer. Nutrition and Cancer, 2001, 39, 170-175.	2.0	85
70	The PI3K/AKT signaling pathway: Associations of miRNAs with dysregulated gene expression in colorectal cancer. Molecular Carcinogenesis, 2018, 57, 243-261.	2.7	83
71	Interplay between dietary inducers of GST and theGSTM-1 genotype in colon cancer. International Journal of Cancer, 2000, 87, 728-733.	5.1	82
72	Telomere length, telomereâ€related genes, and breast cancer risk: The breast cancer health disparities study. Genes Chromosomes and Cancer, 2013, 52, 595-609.	2.8	82

#	Article	IF	CITATIONS
73	Expression Profiles of miRNA Subsets Distinguish Human Colorectal Carcinoma and Normal Colonic Mucosa. Clinical and Translational Gastroenterology, 2016, 7, e152.	2.5	82
74	Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Causes and Control, 2002, 13, 813-823.	1.8	81
75	Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer. PLoS Genetics, 2014, 10, e1004228.	3.5	81
76	Dietary fats and colon cancer: Assessment of risk associated with specific fatty acids. International Journal of Cancer, 1997, 73, 670-677.	5.1	80
77	The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics, 2019, 111, 762-771.	2.9	80
78	Microsatellite instability and survival in rectal cancer. Cancer Causes and Control, 2009, 20, 1763-1768.	1.8	78
79	Physical activity and breast cancer. Cancer, 1998, 83, 611-620.	4.1	77
80	Prevalence and predictors of cancer screening among American Indian and Alaska native people: the EARTH study. Cancer Causes and Control, 2008, 19, 725-737.	1.8	77
81	Defining dietary consumption: is the sum greater than its parts?. American Journal of Clinical Nutrition, 2008, 88, 14-15.	4.7	77
82	Energy Balance and Rectal Cancer: An Evaluation of Energy Intake, Energy Expenditure, and Body Mass Index. Nutrition and Cancer, 2003, 46, 166-171.	2.0	76
83	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	5.5	76
84	Convergence of Hormones, Inflammation, and Energy-Related Factors: A Novel Pathway of Cancer Etiology. Cancer Prevention Research, 2009, 2, 922-930.	1.5	75
85	Dietary intake and microsatellite instability in colon tumors. International Journal of Cancer, 2001, 93, 601-607.	5.1	73
86	Dysregulated genes and miRNAs in the apoptosis pathway in colorectal cancer patients. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 237-250.	4.9	73
87	Estrogen and Progesterone Receptors in Colon Tumors. American Journal of Clinical Pathology, 2000, 113, 364-368.	0.7	72
88	Interleukin genes and associations with colon and rectal cancer risk and overall survival. International Journal of Cancer, 2013, 132, 905-915.	5.1	72
89	Lifestyle factors and Ki-ras mutations in colon cancer tumors. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 483, 73-81.	1.0	71
90	The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression. Journal of Cancer Research and Clinical Oncology, 2018, 144, 269-283.	2.5	71

#	Article	IF	CITATIONS
91	Matrix Metalloproteinase Genes Are Associated with Breast Cancer Risk and Survival: The Breast Cancer Health Disparities Study. PLoS ONE, 2013, 8, e63165.	2.5	70
92	Colon cancer screening, lifestyle, and risk of colon cancer. Cancer Causes and Control, 2000, 11, 555-563.	1.8	67
93	IL6, Aspirin, Nonsteroidal Anti-inflammatory Drugs, and Breast Cancer Risk in Women Living in the Southwestern United States. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 747-755.	2.5	67
94	Genetic variation in genes involved in hormones, inflammation and energetic factors and breast cancer risk in an admixed population. Carcinogenesis, 2012, 33, 1512-1521.	2.8	67
95	The coâ€regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes and Cancer, 2017, 56, 769-787.	2.8	67
96	Hormone replacement therapy and improved survival among postmenopausal women diagnosed with colon cancer (USA). Cancer Causes and Control, 1999, 10, 467-473.	1.8	66
97	Antioxidants, Carotenoids, and Risk of Rectal Cancer. American Journal of Epidemiology, 2004, 159, 32-41.	3.4	63
98	Increased Risk of Colon Cancer Associated with a Genetic Polymorphism of <i>SMAD7</i> . Cancer Research, 2010, 70, 1479-1485.	0.9	63
99	Associations between genetic variation in RUNX1 , RUNX2 , RUNX3 , MAPK1 and elF4E and risk of colon and rectal cancer: additional support for a TGF-β-signaling pathway. Carcinogenesis, 2011, 32, 318-326.	2.8	63
100	Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Journal of the National Cancer Institute, 2015, 107, djv246.	6.3	63
101	Physical Activity and Breast Cancer Risk Among Women in the Southwestern United States. Annals of Epidemiology, 2007, 17, 342-353.	1.9	62
102	Associations between apoE genotype and colon and rectal cancer. Carcinogenesis, 2005, 26, 1422-1429.	2.8	61
103	Associations between BMI, energy intake, energy expenditure, VDR genotype and colon and rectal cancers (United States). Cancer Causes and Control, 2004, 15, 863-872.	1.8	60
104	Haplotype Analysis of Common Vitamin D Receptor Variants and Colon and Rectal Cancers. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 744-749.	2.5	60
105	Development and Use of Touch-Screen Audio Computer-assisted Self-Interviewing in a Study of American Indians. American Journal of Epidemiology, 2007, 165, 1336-1342.	3.4	60
106	Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 1206-14.	2.5	60
107	A description of age, sex, and site distributions of colon carcinoma in three geographic areas. , 1996, 78, 1666-1670.		59
108	Energy balance, insulin-related genes and risk of colon and rectal cancer. International Journal of Cancer, 2005, 115, 148-154.	5.1	59

#	Article	IF	CITATIONS
109	Associations with growth factor genes (FGF1, FGF2, PDGFB, FGFR2, NRG2, EGF, ERBB2) with breast cancer risk and survival: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2013, 140, 587-601.	2.5	58
110	Meat Consumption Patterns and Preparation, Genetic Variants of Metabolic Enzymes, and Their Association with Rectal Cancer in Men and Women. Journal of Nutrition, 2004, 134, 776-784.	2.9	57
111	Associations between vitamin D, vitamin D receptor gene and the androgen receptor gene with colon and rectal cancer. International Journal of Cancer, 2006, 118, 3140-3146.	5.1	57
112	Analysis of dietary patterns in epidemiological researchThis paper is one of a selection of papers published in the CSCN–CSNS 2009 Conference, entitled Are dietary patterns the best way to make nutrition recommendations for chronic disease prevention?. Applied Physiology, Nutrition and Metabolism, 2010, 35, 207-210.	1.9	57
113	Reproductive history, breastâ€feeding and risk of triple negative breast cancer: The Breast Cancer Etiology in Minorities (BEM) study. International Journal of Cancer, 2018, 142, 2273-2285.	5.1	56
114	Colon tumor mutations and epigenetic changes associated with genetic polymorphism: Insight into disease pathways. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 660, 12-21.	1.0	55
115	Mendelian randomization study of height and risk of colorectal cancer. International Journal of Epidemiology, 2015, 44, 662-672.	1.9	55
116	Drugs and colon cancer. , 1998, 7, 99-106.		54
117	Genetic Variation in the TGF-Î ² Signaling Pathway and Colon and Rectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 57-69.	2.5	54
118	A Pooled Analysis of Smoking and Colorectal Cancer: Timing of Exposure and Interactions with Environmental Factors. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1974-1985.	2.5	54
119	Intake of fluids and methylxanthine-containing beverages: Association with colon cancer. , 1999, 81, 199-204.		53
120	Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women. Journal of the National Cancer Institute, 2017, 109, djw215.	6.3	53
121	MicroRNA Seed Region Length Impact on Target Messenger RNA Expression and Survival in Colorectal Cancer. PLoS ONE, 2016, 11, e0154177.	2.5	52
122	Smoking and bladder cancer.The modifying effect of cigarettes on other factors. Cancer, 1988, 61, 402-408.	4.1	51
123	Traditional foods and physical activity patterns and associations with cultural factors in a diverse Alaska Native population. International Journal of Circumpolar Health, 2008, 67, 335-348.	1.2	51
124	Leptin and leptin receptor genotypes and colon cancer: Gene–gene and gene–lifestyle interactions. International Journal of Cancer, 2008, 122, 1611-1617.	5.1	50
125	Mutation analysis of adenomas and carcinomas of the colon: Early and late drivers. Genes Chromosomes and Cancer, 2018, 57, 366-376.	2.8	50
126	Vitamin D Receptor Gene Polymorphisms, Dietary Promotion of Insulin Resistance, and Colon and Rectal Cancer. Nutrition and Cancer, 2006, 55, 35-43.	2.0	49

#	Article	IF	CITATIONS
127	<i>CDX2 VDR</i> Polymorphism and Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2752-2755.	2.5	48
128	Somatic alterations, metabolizing genes and smoking in rectal cancer. International Journal of Cancer, 2009, 125, 158-164.	5.1	48
129	Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 706, 13-20.	1.0	48
130	Gene–Environment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1824-1833.	2.5	48
131	Diet, physical activity, and body size associations with rectal tumor mutations and epigenetic changes. Cancer Causes and Control, 2010, 21, 1237-1245.	1.8	47
132	Genetic variation in Câ€reactive protein in relation to colon and rectal cancer risk and survival. International Journal of Cancer, 2011, 128, 2726-2734.	5.1	47
133	Active and passive smoking, IL6, ESR1, and breast cancer risk. Breast Cancer Research and Treatment, 2008, 109, 101-111.	2.5	46
134	The MAPK-Signaling Pathway in Colorectal Cancer: Dysregulated Genes and Their Association With MicroRNAs. Cancer Informatics, 2018, 17, 117693511876652.	1.9	45
135	Aspirin, NSAIDs, and colorectal cancer: possible involvement in an insulin-related pathway. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 538-45.	2.5	45
136	PPARÎ ³ and Colon and Rectal Cancer: Associations with Specific Tumor Mutations, Aspirin, Ibuprofen and Insulin-Related Genes (United States). Cancer Causes and Control, 2006, 17, 239-249.	1.8	44
137	Assessing Tumor Mutations to Gain Insight into Base Excision Repair Sequence Polymorphisms and Smoking in Colon Cancer. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 3384-3388.	2.5	44
138	Angiogenesis genes, dietary oxidative balance and breast cancer risk and progression: The breast cancer health disparities study. International Journal of Cancer, 2014, 134, 629-644.	5.1	44
139	Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Human Genetics, 2019, 138, 307-326.	3.8	44
140	Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut, 2021, 70, 1325-1334.	12.1	44
141	Vitamin D Receptor Gene (VDR) Associations with Cancer. Nutrition Reviews, 2007, 65, 102-104.	5.8	44
142	<i>Transcription Factor 7–like 2</i> Polymorphism and Colon Cancer. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 978-982.	2.5	43
143	lκBKβ and NFκB1 , NSAID use and risk of colorectal cancer in the Colon Cancer Family Registry. Carcinogenesis, 2013, 34, 79-85.	2.8	43
144	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43

#	Article	IF	CITATIONS
145	Oxidative balance and colon and rectal cancer: Interaction of lifestyle factors and genes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 734, 30-40.	1.0	42
146	Dietary Influence on MAPK-Signaling Pathways and Risk of Colon and Rectal Cancer. Nutrition and Cancer, 2013, 65, 729-738.	2.0	42
147	MicroRNAâ€transcription factor interactions and their combined effect on target gene expression in colon cancer cases. Genes Chromosomes and Cancer, 2018, 57, 192-202.	2.8	42
148	Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Research and Treatment, 2011, 129, 531-539.	2.5	41
149	Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis. Modern Pathology, 2016, 29, 915-927.	5.5	41
150	Site-specific associations between miRNA expression and survival in colorectal cancer cases. Oncotarget, 2016, 7, 60193-60205.	1.8	41
151	Diet activity, and lifestyle associations with p53 mutations in colon tumors. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 541-8.	2.5	41
152	Vitamin E and colon cancer: Is there an association?. Nutrition and Cancer, 1998, 30, 201-206.	2.0	40
153	VEGFA, FLT1, KDR and colorectal cancer: Assessment of disease risk, tumor molecular phenotype, and survival. Molecular Carcinogenesis, 2014, 53, E140-50.	2.7	40
154	DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. International Journal of Cancer, 2020, 146, 363-372.	5.1	40
155	Lifestyle and blood pressure levels in male twins in Utah. Genetic Epidemiology, 1988, 5, 277-287.	1.3	39
156	Modifying Effects of ILâ€6 Polymorphisms on Body Size–Associated Breast Cancer Risk. Obesity, 2008, 16, 339-347.	3.0	39
157	Genetic variants in interleukin genes are associated with breast cancer risk and survival in a genetically admixed population: the Breast Cancer Health Disparities Study. Carcinogenesis, 2014, 35, 1750-1759.	2.8	39
158	Gene expression in colon cancer: A focus on tumor site and molecular phenotype. Genes Chromosomes and Cancer, 2015, 54, 527-541.	2.8	39
159	Nongenetic Determinants of Risk forÂEarly-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab029.	2.9	39
160	Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer. PLoS Genetics, 2016, 12, e1006296.	3.5	38
161	Genetic Variation in Selenoprotein Genes, Lifestyle, and Risk of Colon and Rectal Cancer. PLoS ONE, 2012, 7, e37312.	2.5	37
162	Reproductive history in relation to breast cancer risk among Hispanic and non-Hispanic white women. Cancer Causes and Control, 2008, 19, 391-401.	1.8	36

#	Article	IF	CITATIONS
163	Genetic variation in the JAK/STAT/SOCS signaling pathway influences breast cancer-specific mortality through interaction with cigarette smoking and use of aspirin/NSAIDs: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2014, 147, 145-158.	2.5	36
164	Association of cigarette smoking and microRNA expression in rectal cancer: Insight into tumor phenotype. Cancer Epidemiology, 2016, 45, 98-107.	1.9	36
165	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	1.3	36
166	Vitamin D Receptor Gene (VDR) Associations with Cancer. Nutrition Reviews, 2007, 65, S102-S104.	5.8	35
167	The TCFÎ ² -signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs. Journal of Translational Medicine, 2018, 16, 191.	4.4	35
168	Mendelian randomization analysis of C-reactive protein on colorectal cancer risk. International Journal of Epidemiology, 2019, 48, 767-780.	1.9	35
169	Genome-Wide Search for Gene-Gene Interactions in Colorectal Cancer. PLoS ONE, 2012, 7, e52535.	2.5	35
170	Risk of colon cancer associated with a family history of cancer or colorectal polyps: The Diet, Activity, and Reproduction in Colon Cancer Study. , 1998, 78, 157-160.		34
171	Genetic variation in the transforming growth factorâ $\widehat{\mathfrak{cl}^2}$ signaling pathway and survival after diagnosis with colon and rectal cancer. Cancer, 2011, 117, 4175-4183.	4.1	34
172	Genetic variation in the lipoxygenase pathway and risk of colorectal neoplasia. Genes Chromosomes and Cancer, 2013, 52, 437-449.	2.8	34
173	SEPP1 Influences Breast Cancer Risk among Women with Greater Native American Ancestry: The Breast Cancer Health Disparities Study. PLoS ONE, 2013, 8, e80554.	2.5	34
174	Association Between Molecular Subtypes of Colorectal Tumors and Patient Survival, Based on Pooled Analysis of 7 International Studies. Gastroenterology, 2020, 158, 2158-2168.e4.	1.3	34
175	Genetic and lifestyle influence on telomere length and subsequent risk of colon cancer in a case control study. International Journal of Molecular Epidemiology and Genetics, 2012, 3, 184-94.	0.4	34
176	Impact of polymorphisms in microRNA biogenesis genes on colon cancer risk and microRNA expression levels: a population-based, case-control study. BMC Medical Genomics, 2016, 9, 21.	1.5	33
177	Overall and Abdominal Adiposity and Premenopausal Breast Cancer Risk among Hispanic Women: The Breast Cancer Health Disparities Study. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 138-147.	2.5	31
178	ESR1, AR, body size, and breast cancer risk in Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Research and Treatment, 2007, 105, 327-335.	2.5	30
179	Use of archival tissue in epidemiologic studies: collection procedures and assessment of potential sources of bias. Mutation Research - Mutation Research Genomics, 2000, 432, 7-14.	1.1	29
180	Tumor markers and rectal cancer: Support for an inflammationâ€related pathway. International Journal of Cancer, 2009, 125, 1698-1704.	5.1	29

#	Article	IF	CITATIONS
181	miRNA involvement in cell cycle regulation in colorectal cancer cases. Genes and Cancer, 2018, 9, 53-65.	1.9	29
182	Reproductive factors and colon cancer: the influences of age, tumor site, and family history on risk (Utah, United States). Cancer Causes and Control, 1995, 6, 332-338.	1.8	28
183	Development, Implementation, and Evaluation of a Computerized Self-Administered Diet History Questionnaire for Use in Studies of American Indian and Alaskan Native People. Journal of the American Dietetic Association, 2008, 108, 101-109.	1.1	28
184	Nutrients in Folate-Mediated, One-Carbon Metabolism and the Risk of Rectal Tumors in Men and Women. Nutrition and Cancer, 2011, 63, 357-366.	2.0	28
185	Genetic variation in bone morphogenetic protein and colon and rectal cancer. International Journal of Cancer, 2012, 130, 653-664.	5.1	28
186	A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1. Human Genetics, 2015, 134, 1249-1262.	3.8	28
187	Diet and lifestyle factors associated with miRNA expression in colorectal tissue. Pharmacogenomics and Personalized Medicine, 2017, Volume10, 1-16.	0.7	28
188	Combined effect of modifiable and non-modifiable risk factors for colorectal cancer risk in a pooled analysis of 11 population-based studies. BMJ Open Gastroenterology, 2019, 6, e000339.	2.7	28
189	Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Medicine, 2020, 18, 229.	5.5	28
190	Infrequently expressed miRNAs influence survival after diagnosis with colorectal cancer. Oncotarget, 2017, 8, 83845-83859.	1.8	28
191	Age and risk factors for colon cancer (United States and Australia): Are there implications for understanding differences in case-control and cohort studies?. Cancer Causes and Control, 1994, 5, 557-563.	1.8	27
192	p53 Alterations in Colon Tumors. Applied Immunohistochemistry and Molecular Morphology, 2004, 12, 380-386.	1.2	27
193	Dietary Intake of Folate, B-Vitamins and Methionine and Breast Cancer Risk among Hispanic and Non-Hispanic White Women. PLoS ONE, 2013, 8, e54495.	2.5	27
194	Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study. American Journal of Clinical Nutrition, 2021, 113, 1490-1502.	4.7	27
195	Accounting for Dependence Induced by Weighted KNN Imputation in Paired Samples, Motivated by a Colorectal Cancer Study. PLoS ONE, 2015, 10, e0119876.	2.5	27
196	Physical Activity Patterns of American Indian and Alaskan Native People Living in Alaska and the Southwestern United States. American Journal of Health Promotion, 2009, 23, 388-395.	1.7	26
197	Variation in the CYP19A1 gene and risk of colon and rectal cancer. Cancer Causes and Control, 2011, 22, 955-963.	1.8	26
198	Associations between TCF7L2 polymorphisms and risk of breast cancer among Hispanic and non-Hispanic White women: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2012, 136, 593-602.	2.5	26

#	Article	IF	CITATIONS
199	An analysis of genetic factors related to risk of inflammatory bowel disease and colon cancer. Cancer Epidemiology, 2014, 38, 583-590.	1.9	26
200	Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress. PLoS ONE, 2015, 10, e0134406.	2.5	26
201	Power in pairs: assessing the statistical value of paired samples in tests for differential expression. BMC Genomics, 2018, 19, 953.	2.8	26
202	Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Research, 2020, 80, 4578-4590.	0.9	26
203	Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 860-870.	2.5	26
204	Influence of Smoking, Body Mass Index, and Other Factors on the Preventive Effect of Nonsteroidal Anti-Inflammatory Drugs on Colorectal Cancer Risk. Cancer Research, 2018, 78, 4790-4799.	0.9	26
205	Thymidylate synthase polymorphisms and colon cancer: Associations with tumor stage, tumor characteristics and survival. International Journal of Cancer, 2007, 120, 2226-2232.	5.1	25
206	SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk. PLoS ONE, 2015, 10, e0143894.	2.5	25
207	A Candidate-Pathway Approach to Identify Gene-Environment Interactions: Analyses of Colon Cancer Risk and Survival. Journal of the National Cancer Institute, 2015, 107, .	6.3	25
208	Genetic variants in the TGFβ-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget, 2017, 8, 16765-16783.	1.8	25
209	Does nutritionist review of a self-administered food frequency questionnaire improve data quality?. Public Health Nutrition, 1999, 2, 565-569.	2.2	24
210	Genetic ancestry modifies the association between genetic risk variants and breast cancer risk among Hispanic and non-Hispanic white women. Carcinogenesis, 2013, 34, 1787-1793.	2.8	24
211	Diet and lifestyle factors modify immune/inflammation response genes to alter breast cancer risk and prognosis: The Breast Cancer Health Disparities Study. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 770, 19-28.	1.0	24
212	Genetic Admixture among Hispanics and Candidate Gene Polymorphisms: Potential for Confounding in a Breast Cancer Study?. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 142-150.	2.5	23
213	Active and passive cigarette smoking and mortality among Hispanic and non-Hispanic white women diagnosed with invasive breast cancer. Annals of Epidemiology, 2015, 25, 824-831.	1.9	23
214	Occupation and bladder cancer in utah. American Journal of Industrial Medicine, 1989, 16, 89-102.	2.1	22
215	Associations between family history of colorectal cancer and genetic alterations in tumors. International Journal of Cancer, 2002, 97, 823-827.	5.1	21
216	Associations among Body Mass Index, Waist Circumference, and Health Indicators in American Indian and Alaska Native Adults. American Journal of Health Promotion, 2010, 24, 246-254.	1.7	21

#	Article	IF	CITATIONS
217	<i>TERT's</i> role in colorectal carcinogenesis. Molecular Carcinogenesis, 2013, 52, 507-513.	2.7	21
218	Single nucleotide polymorphisms within MicroRNAs, MicroRNA targets, and MicroRNA biogenesis genes and their impact on colorectal cancer survival. Genes Chromosomes and Cancer, 2017, 56, 285-295.	2.8	21
219	PPARγ, Energy Balance, and Associations With Colon and Rectal Cancer. Nutrition and Cancer, 2005, 51, 155-161.	2.0	20
220	Polymorphisms in insulin-related genes predispose to specific KRAS2 and TP53 mutations in colon cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 595, 117-124.	1.0	20
221	Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor. BMC Medical Genetics, 2010, 11, 170.	2.1	20
222	Energy homeostasis genes and breast cancer risk: The influence of ancestry, body size, and menopausal status, the breast cancer health disparities study. Cancer Epidemiology, 2015, 39, 1113-1122.	1.9	20
223	MAPK Genes Interact with Diet and Lifestyle Factors to Alter Risk of Breast Cancer: The Breast Cancer Health Disparities Study. Nutrition and Cancer, 2015, 67, 292-304.	2.0	20
224	Body Size Throughout Adult Life Influences Postmenopausal Breast Cancer Risk among Hispanic Women: The Breast Cancer Health Disparities Study. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 128-137.	2.5	20
225	Calcium, Vitamin D, VDR Genotypes, and Epigenetic and Genetic Changes in Rectal Tumors. Nutrition and Cancer, 2010, 62, 436-442.	2.0	19
226	Clutathione peroxidase tagSNPs: Associations with rectal cancer but not with colon cancer. Genes Chromosomes and Cancer, 2012, 51, 598-605.	2.8	19
227	Associations between <i>ALOX</i> , <i>COX</i> , and <i>CRP</i> polymorphisms and breast cancer among Hispanic and nonâ€Hispanic white women: The breast cancer health disparities study. Molecular Carcinogenesis, 2015, 54, 1541-1553.	2.7	19
228	The Interaction between Genetic Ancestry and Breast Cancer Risk Factors among Hispanic Women: The Breast Cancer Health Disparities Study. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 692-701.	2.5	19
229	Alcohol Consumption and Rectal Tumor Mutations and Epigenetic Changes. Diseases of the Colon and Rectum, 2010, 53, 1182-1189.	1.3	18
230	Serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 in relation to breast cancer among Hispanic and white, non-Hispanic women in the US Southwest. Breast Cancer Research and Treatment, 2010, 121, 661-669.	2.5	18
231	Genetic variation in bone morphogenetic proteins and breast cancer risk in hispanic and nonâ€hispanic white women: The breast cancer health disparities study. International Journal of Cancer, 2013, 132, 2928-2939.	5.1	18
232	Improved survival among colon cancer patients with increased differentially expressed pathways. BMC Medicine, 2015, 13, 75.	5.5	18
233	Dietary intake alters gene expression in colon tissue. Pharmacogenetics and Genomics, 2016, 26, 294-306.	1.5	18
234	Red meat, poultry, and fish intake and breast cancer risk among Hispanic and Non-Hispanic white women: The Breast Cancer Health Disparities Study. Cancer Causes and Control, 2016, 27, 527-543.	1.8	18

#	Article	IF	CITATIONS
235	CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk. British Journal of Cancer, 2016, 114, 221-229.	6.4	18
236	Tumor necrosis factor-related genes and colon and rectal cancer. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 328-38.	0.4	18
237	Genetic variability in IL23R and risk of colorectal adenoma and colorectal cancer. Cancer Epidemiology, 2012, 36, e104-e110.	1.9	17
238	Construct Validity of the SF-12 among American Indian and Alaska Native People Using Two Known Scoring Methods. Journal of Health Care for the Poor and Underserved, 2012, 23, 1123-1136.	0.8	17
239	Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype. Modern Pathology, 2017, 30, 1152-1169.	5.5	17
240	Leptin gene variants and colorectal cancer risk: Sex-specific associations. PLoS ONE, 2018, 13, e0206519.	2.5	17
241	Expression of Wnt-signaling pathway genes and their associations with miRNAs in colorectal cancer. Oncotarget, 2018, 9, 6075-6085.	1.8	17
242	The Influence of the CHIEF Pathway on Colorectal Cancer-Specific Mortality. PLoS ONE, 2014, 9, e116169.	2.5	16
243	Interaction between Common Breast Cancer Susceptibility Variants, Genetic Ancestry, and Nongenetic Risk Factors in Hispanic Women. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1731-1738.	2.5	16
244	Validation of a dietary history questionnaire for American Indian and Alaska Native people. Ethnicity and Disease, 2010, 20, 429-36.	2.3	16
245	Genetic variants and non-genetic factors predict circulating vitamin D levels in Hispanic and non-Hispanic White women: the Breast Cancer Health Disparities Study. International Journal of Molecular Epidemiology and Genetics, 2014, 5, 31-46.	0.4	16
246	Powerful Setâ€Based Geneâ€Environment Interaction Testing Framework for Complex Diseases. Genetic Epidemiology, 2015, 39, 609-618.	1.3	15
247	Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. Journal of the National Cancer Institute, 2022, , .	6.3	15
248	Diet and lifestyle factors interact with MAPK genes to influence survival: the Breast Cancer Health Disparities Study. Cancer Causes and Control, 2014, 25, 1211-1225.	1.8	14
249	Association of Body Mass Index With Colorectal Cancer Risk by Genome-Wide Variants. Journal of the National Cancer Institute, 2021, 113, 38-47.	6.3	14
250	Telomere Length, TERT, and miRNA Expression. PLoS ONE, 2016, 11, e0162077.	2.5	14
251	Candidate pathway polymorphisms in one-carbon metabolism and risk of rectal tumor mutations. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 1-8.	0.4	14
252	Genetic variability in EGFR, Src and HER2 and risk of colorectal adenoma and cancer. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 300-15.	0.4	14

#	Article	IF	CITATIONS
253	Measurement Errors Stemming from Nonrespondents Present at In-Person Interviews. Annals of Epidemiology, 1998, 8, 272-277.	1.9	13
254	Does Nonsteroidal Anti-inflammatory Drug Use Modify the Effect of a Low-Fat, High-Fiber Diet on Recurrence of Colorectal Adenomas?. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2359-2365.	2.5	13
255	Validation of a Historical Physical Activity Questionnaire in Middle-Aged Women. Journal of Physical Activity and Health, 2007, 4, 343-355.	2.0	13
256	A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer. Carcinogenesis, 2015, 36, 49-59.	2.8	13
257	Ethnic differences in the relationships between diabetes, early age adiposity and mortality among breast cancer survivors: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2016, 157, 167-178.	2.5	13
258	Transcription factorâ€microRNA associations and their impact on colorectal cancer survival. Molecular Carcinogenesis, 2017, 56, 2512-2526.	2.7	13
259	Disease heterogeneity: Does it impact our ability to detect dietary associations with breast cancer?. Nutrition and Cancer, 1995, 24, 213-220.	2.0	12
260	Leptin and colorectal cancer: an undefined link. Nature Reviews Gastroenterology & Hepatology, 2007, 4, 118-119.	1.7	12
261	Changing population characteristics, effect-measure modification, and cancer risk factor identification. Epidemiologic Perspectives and Innovations, 2007, 4, 10.	7.0	12
262	ADRB2 G–G haplotype associated with breast cancer risk among Hispanic and non-Hispanic white women: interaction with type 2 diabetes and obesity. Cancer Causes and Control, 2012, 23, 1653-1663.	1.8	12
263	How Much Physical Activity Do We Need to Maintain Health and Prevent Disease? Different Diseases-Different Mechanisms. Research Quarterly for Exercise and Sport, 1996, 67, 209-212.	1.4	11
264	Diet and Colorectal Cancer: Analysis of a Candidate Pathway Using SNPS, Haplotypes, and Multi-Gene Assessment. Nutrition and Cancer, 2011, 63, 1226-1234.	2.0	11
265	Genetic Variation in the Transforming Growth Factor-β-Signaling Pathway, Lifestyle Factors, and Risk of Colon or Rectal Cancer. Diseases of the Colon and Rectum, 2012, 55, 532-540.	1.3	11
266	Incorporation of subject-level covariates in quantile normalization of miRNA data. BMC Genomics, 2015, 16, 1045.	2.8	11
267	Accounting for Missing Data in Clinical Research. JAMA - Journal of the American Medical Association, 2016, 315, 517.	7.4	11
268	Associations between genetic variants in the TGF-β signaling pathway and breast cancer risk among Hispanic and non-Hispanic white women. Breast Cancer Research and Treatment, 2013, 141, 287-297.	2.5	10
269	The influence of genetic ancestry and ethnicity on breast cancer survival associated with genetic variation in the TGF-β-signaling pathway: The Breast Cancer Health Disparities Study. Cancer Causes and Control, 2014, 25, 293-307.	1.8	10
270	Cigarette Smoking and Breast Cancer Risk in Hispanic and Non-Hispanic White Women: The Breast Cancer Health Disparities Study. Journal of Women's Health, 2016, 25, 299-310.	3.3	10

#	Article	IF	CITATIONS
271	Energy homeostasis genes and survival after breast cancer diagnosis: the Breast Cancer Health Disparities Study. Cancer Causes and Control, 2016, 27, 47-57.	1.8	10
272	A Pooled Analysis of Breastfeeding and Breast Cancer Risk by Hormone Receptor Status in Parous Hispanic Women. Epidemiology, 2019, 30, 449-457.	2.7	10
273	Menstrual and reproductive characteristics and breast cancer risk by hormone receptor status and ethnicity: The Breast Cancer Etiology in Minorities study. International Journal of Cancer, 2020, 147, 1808-1822.	5.1	10
274	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	2.5	10
275	Overall survival is the lowest among young women with postpartum breast cancer. European Journal of Cancer, 2022, 168, 119-127.	2.8	10
276	Sex-Specific Differences in Colon Cancer Associated With p53 Mutations. Nutrition and Cancer, 2004, 49, 41-48.	2.0	9
277	Factors associated with response to a follow-up postal questionnaire in a cohort of American Indians. Preventive Medicine, 2009, 48, 596-599.	3.4	9
278	Macronutrient Composition Influence on Breast Cancer Risk in Hispanic and Non-Hispanic White Women: The 4-Corners Breast Cancer Study. Nutrition and Cancer, 2011, 63, 185-195.	2.0	9
279	An Assessment of Database-Validated microRNA Target Genes in Normal Colonic Mucosa: Implications for Pathway Analysis. Cancer Informatics, 2017, 16, 117693511771640.	1.9	9
280	Association of family history and survival in patients with colorectal cancer: a pooled analysis of eight epidemiologic studies. Cancer Medicine, 2018, 7, 2192-2199.	2.8	9
281	Influence of CHIEF pathway genes on gene expression: a pathway approach to functionality. International Journal of Molecular Epidemiology and Genetics, 2014, 5, 100-11.	0.4	9
282	A computer-assisted data collection system for use in a multicenter study of American Indians and Alaska Natives: SCAPES. Computer Methods and Programs in Biomedicine, 2008, 90, 38-55.	4.7	8
283	Family Health History and Health Behaviors in Alaska Native and American Indian People. Journal of Health Care for the Poor and Underserved, 2009, 20, 678-694.	0.8	8
284	Associations between CYP19A1 polymorphisms, Native American ancestry, and breast cancer risk and mortality: the Breast Cancer Health Disparities Study. Cancer Causes and Control, 2014, 25, 1461-1471.	1.8	8
285	Effectiveness and Usability of Bioinformatics Tools to Analyze Pathways Associated with miRNA Expression. Cancer Informatics, 2015, 14, CIN.S32716.	1.9	8
286	The miRNA landscape of colorectal polyps. Genes Chromosomes and Cancer, 2017, 56, 347-353.	2.8	8
287	The functional role of miRNAs in colorectal cancer: insights from a large population-based study. Cancer Biology and Medicine, 2019, 16, 211.	3.0	8
288	Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location. JNCI Cancer Spectrum, 2020, 4, pkaa042.	2.9	8

#	Article	IF	CITATIONS
289	Association between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab056.	2.9	8
290	Alterations in microRNA expression associated with alcohol consumption in rectal cancer subjects. Cancer Causes and Control, 2017, 28, 545-555.	1.8	7
291	Functional informed genomeâ€wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Medicine, 2020, 9, 3563-3573.	2.8	7
292	Epidermal growth factor receptor (EGFR) polymorphisms and breast cancer among Hispanic and non-Hispanic white women: the Breast Cancer Health Disparities Study. International Journal of Molecular Epidemiology and Genetics, 2013, 4, 235-49.	0.4	7
293	Genetically Predicted Circulating C-Reactive Protein Concentration and Colorectal Cancer Survival: A Mendelian Randomization Consortium Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1349-1358.	2.5	6
294	MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer. Genes and Cancer, 2018, 9, 232-246.	1.9	6
295	Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality. International Journal of Molecular Epidemiology and Genetics, 2016, 7, 45-57.	0.4	6
296	Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival. Scientific Reports, 2022, 12, 127.	3.3	6
297	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	2.5	6
298	Identifying factors associated with the direction and significance of microRNA tumor-normal expression differences in colorectal cancer. BMC Cancer, 2017, 17, 707.	2.6	5
299	Telomere Maintenance Variants and Survival after Colorectal Cancer: Smoking- and Sex-Specific Associations. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1817-1824.	2.5	5
300	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	6.2	5
301	Smoking Behavior and Prognosis After Colorectal Cancer Diagnosis: A Pooled Analysis of 11 Studies. JNCI Cancer Spectrum, 2021, 5, pkab077.	2.9	5
302	Low-Energy Reporters: Evaluation of Potential Differential Reporting in Case-Control Studies. Nutrition and Cancer, 2002, 42, 173-179.	2.0	4
303	Pre-diagnostic breastfeeding, adiposity, and mortality among parous Hispanic and non-Hispanic white women with invasive breast cancer: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2017, 161, 321-331.	2.5	4
304	The Association of Whole Grain Intake and Fasting Insulin in a Biracial Cohort of Young Adults: The CARDIA Study. CVD Prevention, 1998, 1, 231-242.	0.0	4
305	Energy homeostasis genes modify the association between serum concentrations of IGF-1 and IGFBP-3 and breast cancer risk. Scientific Reports, 2022, 12, 1837.	3.3	4
306	Primary prevention of colon cancer with dietary and micronutrient interventions. Cancer, 1998, 83, 1734-1739.	4.1	3

#	Article	IF	CITATIONS
307	Associations between ALDH1A1 polymorphisms, alcohol consumption, and mortality among Hispanic and non-Hispanic white women diagnosed with breast cancer: the Breast Cancer Health Disparities Study. Breast Cancer Research and Treatment, 2018, 168, 443-455.	2.5	3
308	Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients, 2021, 13, 4164.	4.1	3
309	CYP19A1 single nucleotide polymorphism associations with CYP19A1, NFκB1, and IL6 gene expression in human normal colon and normal liver samples. Pharmacogenomics and Personalized Medicine, 2014, 7, 163.	0.7	2
310	Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival. International Journal of Environmental Research and Public Health, 2017, 14, 1146.	2.6	2
311	Genetic variants associated with circulating Câ€reactive protein levels and colorectal cancer survival: Sexâ€specific and lifestyle factors specific associations. International Journal of Cancer, 2022, 150, 1447-1454.	5.1	2
312	Bone Mineral Density in Navajo Men and Women and Comparison to Non-Hispanic Whites from NHANES (2005–2008). Journal of Health Care for the Poor and Underserved, 2016, 27, 644-662.	0.8	1
313	Response to Conner et al. Re: "Cigarette Smoking and Breast Cancer Risk in Hispanic and Non-Hispanic White Women: The Breast Cancer Health Disparities Study― Journal of Women's Health, 2017, 26, 92-93.	3.3	1
314	Exploratory Genome-Wide Interaction Analysis of Nonsteroidal Anti-inflammatory Drugs and Predicted Gene Expression on Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1800-1808.	2.5	1
315	Genetic Predictors of Circulating 25-Hydroxyvitamin D and Prognosis after Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1128-1134.	2.5	1
316	Genetic Variants in the Regulatory T cell–Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2719-2728.	2.5	1
317	Cumulative menstrual months and breast cancer risk by hormone receptor status and ethnicity: The Breast Cancer Etiology in Minorities Study. International Journal of Cancer, 2022, 150, 208-220.	5.1	0
318	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	6.3	0
319	Dairy intake and the insulin resistance syndrome in the CARDIA Study Circulation, 2001, 103, 1364-1364.	1.6	0