Luigi Dei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3187292/publications.pdf

Version: 2024-02-01

623734 434195 1,306 30 14 31 h-index citations g-index papers 46 46 46 1724 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Creativity in Art, Literature, Music, Science, and Inventions. Substantia, 2022, 6, 13-23.	0.3	1
2	Performance of innovative nanomaterials for bone remains consolidation and effect on 14C dating and on palaeogenetic analysis. Scientific Reports, 2022, 12, 6975.	3.3	3
3	Indoor levels of volatile organic compounds at Florentine museum environments in Italy. Indoor Air, 2020, 30, 900-913.	4.3	9
4	The Effect of Temperature and Magnetic Field on the Precipitation of Insoluble Salts of Alkaline Earth Metals. Journal of Solution Chemistry, 2020, 49, 289-305.	1.2	6
5	Structural, rheological and dynamics insights of hydroxypropyl guar gel-like systems. Colloids and Surfaces B: Biointerfaces, 2018, 168, 178-186.	5. O	21
6	First evidence of microplastic ingestion by fishes from the Amazon River estuary. Marine Pollution Bulletin, 2018, 133, 814-821.	5 . 0	179
7	Chelators confined into 80pvac-borax highly viscous dispersions for the removal of gypsum degradation layers. Pure and Applied Chemistry, 2017, 89, 97-109.	1.9	10
8	Tunable growth of gold nanostructures atÂa PDMS surface to obtain plasmon rulers with enhanced optical features. Mikrochimica Acta, 2017, 184, 3093-3102.	5 . O	10
9	Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure. Beilstein Journal of Nanotechnology, 2016, 7, 9-21.	2.8	19
10	Specific Anion Effects on the Kinetics of Iodination of Acetone. ChemPhysChem, 2016, 17, 2567-2571.	2.1	11
11	Structure and rheology of gel nanostructures from a vitamin C-based surfactant. Physical Chemistry Chemical Physics, 2016, 18, 8865-8873.	2.8	13
12	Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase. Scientific Reports, 2015, 5, 14282.	3. 3	16
13	Synergy of Cobalt and Silver Microparticles Electrodeposited on Glassy Carbon for the Electrocatalysis of the Oxygen Reduction Reaction: An Electrochemical Investigation. Molecules, 2015, 20, 14386-14401.	3.8	11
14	Specific anion effects in Artemia salina. Chemosphere, 2015, 135, 335-340.	8.2	11
15	Organogel formulations for the cleaning of easel paintings. Applied Physics A: Materials Science and Processing, 2015, 121, 857-868.	2.3	43
16	Micelle, microemulsions, and gels for the conservation of cultural heritage. Advances in Colloid and Interface Science, 2014, 205, 361-371.	14.7	86
17	Micro-layers of polystyrene film preventing metal oxidation: implications in cultural heritage conservation. Applied Physics A: Materials Science and Processing, 2014, 117, 2025-2032.	2.3	1
18	Gels for the Conservation of Cultural Heritage. Materials Research Society Symposia Proceedings, 2012, 1418, 17.	0.1	7

#	Article	IF	CITATIONS
19	d-Sorbitol, a structurally simple, low molecular-mass gelator. New Journal of Chemistry, 2011, 35, 445-452.	2.8	47
20	Peculiar Properties of Water as Solute. Journal of Physical Chemistry B, 2006, 110, 12191-12197.	2.6	18
21	Chemically and Physically Induced (Reversible) Gelation of Organic Liquids by Monomeric and Polymeric Gelators. Macromolecular Symposia, 2005, 227, 173-182.	0.7	8
22	Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Applied Spectroscopy Reviews, 2005, 40, 187-228.	6.7	132
23	Monitoring of Pictorial Surfaces by midâ€FTIR Reflectance Spectroscopy: Evaluation of the Performance of Innovative Colloidal Cleaning Agents. Spectroscopy Letters, 2005, 38, 459-475.	1.0	11
24	Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter, 2005, 1, 17.	2.7	91
25	Evaluation of Gypsum and Calcium Oxalates in Deteriorated Mural Paintings by Quantitative FTIR Spectroscopy. Spectroscopy Letters, 2003, 36, 501-513.	1.0	31
26	Nanotechnologies for Conservation of Cultural Heritage:  Paper and Canvas Deacidification. Langmuir, 2002, 18, 8198-8203.	3.5	164
27	Synthesis of Ca(OH)2 Nanoparticles from Diols. Langmuir, 2001, 17, 2371-2374.	3.5	131
28	Colloidal Particles of Ca(OH)2:  Properties and Applications to Restoration of Frescoes. Langmuir, 2001, 17, 4251-4255.	3.5	184
29	Langmuir Films of p-tert-Butylcalix[8]arene. Conformations at the Waterâ^Air Interface and Complexation of Fullerene C60. Langmuir, 1998, 14, 4143-4147.	3.5	29
30	Interface of Mixed Micelles Formed of Anionic—Cationic and Ionic—Nonionic Surfactants. ACS Symposium Series, 1992, , 180-193.	0.5	2