Steven Holdcroft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalyst layers for fluorineâ€free hydrocarbon PEMFCs. Electrochimica Acta, 2022, 401, 139479.	2.6	5
2	Permselectivity of ionene-based, Aemion® anion exchange membranes. Journal of Membrane Science, 2022, 641, 119917.	4.1	13
3	Transition metal and nitrogen-doped mesoporous carbons as cathode catalysts for anion-exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 306, 121113.	10.8	42
4	Nitrogen and Phosphorus Dual-Doped Silicon Carbide-Derived Carbon/Carbon Nanotube Composite for the Anion-Exchange Membrane Fuel Cell Cathode. ACS Applied Energy Materials, 2022, 5, 2949-2958.	2.5	21
5	Polypyrrole and Polythiophene Modified Carbon Nanotubeâ€Based Cathode Catalysts for Anion Exchange Membrane Fuel Cell. ChemElectroChem, 2022, 9, .	1.7	9
6	Nonconformal Particles of Hyperbranched Sulfonated Phenylated Poly(phenylene) Ionomers as Proton-Conducting Pathways in Proton Exchange Membrane Fuel Cell Catalyst Layers. ACS Energy Letters, 2022, 7, 2070-2078.	8.8	3
7	On the stability of anion exchange membrane fuel cells incorporating polyimidazolium ionene (Aemion+Å®) membranes and ionomers. Sustainable Energy and Fuels, 2022, 6, 3551-3564.	2.5	18
8	Effect of steric constraints on the physicoâ€electrochemical properties of sulfonated polyaromatic copolymers. Polymer International, 2021, 70, 96-106.	1.6	6
9	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	5.0	50
10	Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons. Renewable Energy, 2021, 167, 800-810.	4.3	50
11	On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells. Materials Advances, 2021, 2, 4966-5005.	2.6	41
12	Designing anion exchange membranes for CO2 electrolysers. Nature Energy, 2021, 6, 339-348.	19.8	209
13	Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell. Journal of Power Sources Advances, 2021, 8, 100052.	2.6	43
14	Does power ultrasound affect hydrocarbon Ionomers?. Ultrasonics Sonochemistry, 2021, 75, 105588.	3.8	6
15	Spectroelectrochemical Detection of Water Dissociation in Bipolar Membranes. ACS Applied Materials & Interfaces, 2021, 13, 46125-46133.	4.0	8
16	Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 31275-31287.	3.8	30
17	Hydrocarbon-based Pemionâ"¢ proton exchange membrane fuel cells with state-of-the-art performance. Sustainable Energy and Fuels, 2021, 5, 3687-3699.	2.5	34
18	The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+â,,¢). Journal of Materials Chemistry A, 2021, 9, 15744-15754.	5.2	35

#	Article	IF	CITATIONS
19	Carbonate Ion Crossover in Zero-Gap, KOH Anolyte CO ₂ Electrolysis. Journal of Physical Chemistry C, 2021, 125, 25446-25454.	1.5	32
20	Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling. International Journal of Hydrogen Energy, 2020, 45, 1236-1254.	3.8	23
21	Molecular branching as a simple approach to improving polymer electrolyte membranes. Journal of Membrane Science, 2020, 595, 117539.	4.1	33
22	Does power ultrasound affect Nafion® dispersions?. Ultrasonics Sonochemistry, 2020, 60, 104758.	3.8	22
23	Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochimica Acta, 2020, 334, 135575.	2.6	50
24	Stabilization of Li–S batteries with a lean electrolyte <i>via</i> ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder. Sustainable Energy and Fuels, 2020, 4, 1180-1190.	2.5	15
25	Tuning Ion Exchange Capacity in Hydroxide-Stable Poly(arylimidazolium) Ionenes: Increasing the Ionic Content Decreases the Dependence of Conductivity and Hydration on Temperature and Humidity. Macromolecules, 2020, 53, 10548-10560.	2.2	23
26	Effectiveness of CuO Nanoparticle-Based p–n Bulk-Heterojunction Electrodes for Photoelectrochemical Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 8988-9001.	2.5	8
27	Understanding the role of acid–base interactions using architecturally-controlled, pyridyl-bearing sulfonated phenylated polyphenylenes. Journal of Materials Chemistry A, 2020, 8, 23866-23883.	5.2	5
28	Cathode Catalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 5375-5384.	2.5	61
29	The Nanostructure of HMT-PMBI, a Sterically Hindered Ionene. Macromolecules, 2020, 53, 4908-4916.	2.2	4
30	Electrospun Polyacrylonitrileâ€Derived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem, 2020, 12, 4568-4581.	1.8	31
31	Cathode starvation as an accelerated conditioning procedure for perfluorosulfonic acid ionomer fuel cells. Journal of Power Sources Advances, 2020, 3, 100012.	2.6	23
32	Iron―and Nitrogenâ€Doped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	1.7	53
33	Improving the water management in anion-exchange membrane fuel cells <i>via</i> ultra-thin, directly deposited solid polymer electrolyte. RSC Advances, 2020, 10, 8645-8652.	1.7	35
34	Voltammetry at Hexamethyl-P-Terphenyl Poly(Benzimidazolium) (HMT-PMBI)-Coated Glassy Carbon Electrodes: Charge Transport Properties and Detection of Uric and Ascorbic Acid. Sensors, 2020, 20, 443.	2.1	9
35	Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application. Applied Catalysis B: Environmental, 2020, 272, 119012.	10.8	72
36	Structure–Property Relationships in Sterically Congested Proton-Conducting Poly(phenylene)s: the Impact of Biphenyl Linearity. Macromolecules, 2020, 53, 3119-3138.	2.2	26

#	Article	IF	CITATIONS
37	Communication—Non-Fluorous, Hydrocarbon PEMFCs, Generating > 1 W cmâ^2 Power. Journal of the Electrochemical Society, 2020, 167, 084502.	1.3	14
38	High-performance alkaline water electrolysis using Aemionâ"¢ anion exchange membranes. Journal of Power Sources, 2020, 451, 227814.	4.0	138
39	Water transport through hydrocarbon-based proton exchange membranes. Journal of Membrane Science, 2020, 610, 118276.	4.1	9
40	Transition Metal-Containing Nitrogen-Doped Nanocarbons Derived from 5-Methylresorcinol for Anion Exchange Membrane Fuel Cell Application. ECS Meeting Abstracts, 2020, MA2020-02, 2361-2361.	0.0	0
41	Visualization of Hydroxide Ion Formation upon Electrolytic Water Splitting in an Anion Exchange Membrane. , 2019, 1, 362-366.		42
42	High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 7903-7912.	2.5	80
43	Electrochemical Characterization of Hydrocarbon Bipolar Membranes with Varying Junction Morphology. ACS Applied Energy Materials, 2019, 2, 6817-6824.	2.5	22
44	Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nature Communications, 2019, 10, 2306.	5.8	239
45	Effect of CO2 on the properties of anion exchange membranes for fuel cell applications. Journal of Membrane Science, 2019, 586, 140-150.	4.1	61
46	Energy level alignment and interfacial dipole layer formation at the P3HT:PCBM-Electrolyte interface in organic photoelectrochemical cells. Solar Energy Materials and Solar Cells, 2019, 200, 110009.	3.0	0
47	30â€Î¼4m thin hexamethyl-p-terphenyl poly(benzimidazolium) anion exchange membrane for vanadium redox flow batteries. Electrochemistry Communications, 2019, 102, 37-40.	2.3	24
48	Sulfo-Phenylated Polyphenylenes Containing Sterically Hindered Pyridines. Macromolecules, 2019, 52, 2548-2559.	2.2	36
49	Stability of Hydrocarbon Fuel Cell Membranes: Reaction of Hydroxyl Radicals with Sulfonated Phenylated Polyphenylenes. Chemistry of Materials, 2019, 31, 1441-1449.	3.2	42
50	Microwave-assisted Diels–Alder polycondensation of proton conducting poly(phenylene)s. Polymer Chemistry, 2019, 10, 1668-1685.	1.9	18
51	Sterically-encumbered ionenes as hydroxide ion-conducting polymer membranes. Current Opinion in Electrochemistry, 2019, 18, 99-105.	2.5	21
52	Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes. Sustainable Energy and Fuels, 2019, 3, 3611-3626.	2.5	14
53	Photocathodic hydrogen evolution from catalysed nanoparticle films prepared from stable aqueous dispersions of P3HT and PCBM. Synthetic Metals, 2019, 247, 10-17.	2.1	8
54	Doped, Defectâ€Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1800184.	1.9	37

#	Article	IF	CITATIONS
55	Water Uptake Study of Anion Exchange Membranes. Macromolecules, 2018, 51, 3264-3278.	2.2	141
56	Morphology of Anion-Conducting Ionenes Investigated by X-ray Scattering and Simulation. Journal of Physical Chemistry B, 2018, 122, 1730-1737.	1.2	13
57	Photocrosslinking of low band-gap conjugated polymers using alkyl chloride sidechains: Toward high-efficiency, thermally stable polymer solar cells. Journal of Materials Research, 2018, 33, 1879-1890.	1.2	5
58	Water permeation through anion exchange membranes. Journal of Power Sources, 2018, 375, 442-451.	4.0	60
59	Hydrogen evolution at conjugated polymer nanoparticle electrodes. Canadian Journal of Chemistry, 2018, 96, 148-157.	0.6	10
60	SFU Chemistry 1965–2016. Canadian Journal of Chemistry, 2018, 96, v-ix.	0.6	0
61	Sulfophenylated Terphenylene Copolymer Membranes and Ionomers. ChemSusChem, 2018, 11, 4033-4043.	3.6	39
62	Fuel Cell Catalyst Layers and Membrane-Electrode Assemblies Containing Multiblock Poly(arylene) Tj ETQq0 0 C 2018, 165, F891-F897.	rgBT /Ove 1.3	erlock 10 Tf 50 9
63	Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis. Journal of Materials Chemistry A, 2017, 5, 5055-5066.	5.2	63
64	Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochemistry Communications, 2017, 77, 71-75.	2.3	78
65	Tridoped Reduced Graphene Oxide as a Metalâ€Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. Advanced Sustainable Systems, 2017, 1, 1600038.	2.7	50
66	Special Section on Anion Exchange Membranes and AEM-Based Systems. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	1.1	1
67	Probing nanoscale membrane degradation in fuel cells through electron tomography. Journal of Membrane Science, 2017, 539, 138-143.	4.1	16
68	Highly Stable, Low Gas Crossover, Proton onducting Phenylated Polyphenylenes. Angewandte Chemie - International Edition, 2017, 56, 9058-9061.	7.2	83
69	Cationic Polyelectrolytes, Stable in 10 M KOH _{aq} at 100 °C. ACS Macro Letters, 2017, 6, 1089-1093.	2.3	140
70	Highly Stable, Low Gas Crossover, Protonâ€Conducting Phenylated Polyphenylenes. Angewandte Chemie, 2017, 129, 9186-9189.	1.6	24
71	Transparent Bipolar Membrane for Water Splitting Applications. ACS Applied Materials & Interfaces, 2017, 9, 26749-26755.	4.0	41
72	The reasons for the high power density of fuel cells fabricated with directly deposited membranes. Journal of Power Sources, 2016, 326, 170-175.	4.0	55

#	Article	IF	CITATIONS
73	Aqueous Photoelectrochemical Reduction of Anthraquinone Disulfonate at Organic Polymer Films. Macromolecular Chemistry and Physics, 2016, 217, 1119-1127.	1.1	16
74	The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers. Journal of the Electrochemical Society, 2016, 163, F353-F358.	1.3	60
75	Poly(phenylen) und <i>m</i> â€Terphenyl als starke Schutzgruppen zur Herstellung von stabilen organischen Hydroxiden. Angewandte Chemie, 2016, 128, 4898-4902.	1.6	1
76	A completely spray-coated membrane electrode assembly. Electrochemistry Communications, 2016, 70, 65-68.	2.3	39
77	Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy and Environmental Science, 2016, 9, 2130-2142.	15.6	213
78	Water transport through short side chain perfluorosulfonic acid ionomer membranes. Journal of Membrane Science, 2016, 520, 155-165.	4.1	30
79	Effect of ketone versus sulfone groups on the properties of poly(arylene ether)-based proton exchange membranes. Journal of Materials Science, 2016, 51, 9805-9821.	1.7	16
80	Simultaneous, Synergistic Control of Ion Exchange Capacity and Cross-Linking of Sterically-Protected Poly(benzimidazolium)s. Chemistry of Materials, 2016, 28, 8060-8070.	3.2	47
81	Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films. Journal of the American Chemical Society, 2016, 138, 15465-15472.	6.6	25
82	Poly(phenylene) and <i>m</i> â€Terphenyl as Powerful Protecting Groups for the Preparation of Stable Organic Hydroxides. Angewandte Chemie - International Edition, 2016, 55, 4818-4821.	7.2	95
83	Progression in the Morphology of Fuel Cell Membranes upon Conjoint Chemical and Mechanical Degradation. Journal of the Electrochemical Society, 2016, 163, F637-F643.	1.3	42
84	Morphological characterization of a new low-bandgap thermocleavable polymer showing stable photovoltaic properties. Journal of Materials Chemistry A, 2016, 4, 10650-10658.	5.2	8
85	CeO 2 , ZrO 2 and YSZ as mitigating additives against degradation of proton exchange membranes by free radicals. Journal of Membrane Science, 2016, 498, 94-104.	4.1	59
86	Effect of free radical-induced degradation on water permeation through PFSA ionomer membranes. International Journal of Hydrogen Energy, 2015, 40, 16714-16723.	3.8	31
87	Determination of O ₂ Mass Transport at the Pt PFSA lonomer Interface under Reduced Relative Humidity. ACS Applied Materials & Interfaces, 2015, 7, 27314-27323.	4.0	70
88	Synthesis of highly sulfonated polyarylene ethers containing alternating aromatic units. Materials Today Communications, 2015, 3, 114-121.	0.9	21
89	Alcohol-Soluble, Sulfonated Poly(arylene ether)s: Investigation of Hydrocarbon Ionomers for Proton Exchange Membrane Fuel Cell Catalyst Layers. Journal of the Electrochemical Society, 2015, 162, F513-F518.	1.3	29
90	Evolution of water sorption in catalyst coated membranes subjected to combined chemical and mechanical degradation. Physical Chemistry Chemical Physics, 2015, 17, 13872-13881.	1.3	19

#	Article	IF	CITATIONS
91	Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. Electrochemistry Communications, 2015, 60, 168-171.	2.3	54
92	Structurally-Defined, Sulfo-Phenylated, Oligophenylenes and Polyphenylenes. Journal of the American Chemical Society, 2015, 137, 12223-12226.	6.6	85
93	Photoelectrochemical Hydrogen Evolution: Single-Layer, Conjugated Polymer Films Bearing Surface-Deposited Pt Nanoparticles. Journal of the Electrochemical Society, 2015, 162, H551-H556.	1.3	23
94	Time-Dependent Mass Transport for O2 Reduction at the Pt Perfluorosulfonic Acid Ionomer Interface. ECS Electrochemistry Letters, 2014, 4, F9-F12.	1.9	8
95	Investigations of crystallinity and chain entanglement on sorption and conductivity of proton exchange membranes. Journal of Membrane Science, 2014, 469, 251-261.	4.1	23
96	Synthesis and proton conductivity of sulfonated, multi-phenylated poly(arylene ether)s. Journal of Polymer Science Part A, 2014, 52, 2579-2587.	2.5	16
97	Polybenzimidazoles with Pendant Quaternary Ammonium Groups as Anion Exchange Membranes: Synthesis, Characterization and Alkaline Stability. Materials Research Society Symposia Proceedings, 2014, 1677, 1.	0.1	2
98	Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. Journal of Power Sources, 2014, 257, 102-110.	4.0	179
99	Characterization of pore network structure in catalyst layers of polymer electrolyte fuel cells. Journal of Power Sources, 2014, 247, 322-326.	4.0	32
100	Hydroxide-Stable Ionenes. ACS Macro Letters, 2014, 3, 444-447.	2.3	118
101	Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2014, 246, 950-959.	4.0	32
102	Fuel Cell Catalyst Layers: A Polymer Science Perspective. Chemistry of Materials, 2014, 26, 381-393.	3.2	382
103	Selective Formation of Hydrogen and Hydroxyl Radicals by Electron Beam Irradiation and Their Reactivity with Perfluorosulfonated Acid Ionomer. Journal of the American Chemical Society, 2013, 135, 15923-15932.	6.6	113
104	Controlling Water Content and Proton Conductivity through Copolymer Morphology. Macromolecules, 2013, 46, 9676-9687.	2.2	17
105	The importance of water transport on short-side chain perfluorosulfonic acid membrane fuel cells operating under low relative humidity. Journal of Power Sources, 2013, 242, 877-883.	4.0	24
106	Aqueous photocathode activity of regioregular poly(3-hexylthiophene). Polymer Chemistry, 2013, 4, 5345.	1.9	43
107	Enhancing the phase segregation and connectivity of hydrophilic channels by blending highly sulfonated graft copolymers with fluorous homopolymers. Journal of Materials Chemistry A, 2013, 1, 8118.	5.2	15
108	Quantifying the Structural Changes of Perfluorosulfonated Acid Ionomer upon Reaction with Hydroxyl Radicals. Journal of the American Chemical Society, 2013, 135, 8181-8184.	6.6	80

#	Article	IF	CITATIONS
109	Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. Journal of Polymer Science Part A, 2013, 51, 3654-3666.	2.5	22
110	Controlling Crystallinity in Graft Ionomers, and Its Effect on Morphology, Water Sorption, and Proton Conductivity of Graft Ionomer Membranes. Chemistry of Materials, 2013, 25, 1935-1946.	3.2	46
111	Oxygen Transport Parameters in Nafion(R) 117 under Controlled Relative Humidity. ECS Transactions, 2013, 58, 1097-1103.	0.3	0
112	Ionomer in the Catalyst Layer. ECS Transactions, 2013, 50, 47-50.	0.3	0
113	Pt Band Formation Enhances the Stability of Fuel Cell Membranes. ECS Electrochemistry Letters, 2013, 2, F33-F35.	1.9	50
114	Interfacial vs. Internal Water Transport Resistance of Sulfonated Hydrocarbon Proton-Exchange Membranes. ECS Electrochemistry Letters, 2013, 2, F22-F24.	1.9	15
115	Correlation of charge extraction properties and short circuit current in various organic binary and ternary blend photovoltaic devices. Applied Physics A: Materials Science and Processing, 2012, 108, 515-520.	1.1	4
116	Star Polymers of Sodium Styrenesulfonate Prepared by One-Pot TEMPO-Controlled SFRP. Australian Journal of Chemistry, 2012, 65, 1117.	0.5	4
117	Photoinduced electron transfer in multilayer films composed of conjugated polyelectrolyte and amphiphilic copolymer hosting electron acceptor molecules. Journal of Materials Chemistry, 2012, 22, 140-145.	6.7	7
118	Structural effects on the nano-scale morphology and conductivity of ionomer blends. Journal of Materials Chemistry, 2012, 22, 24348.	6.7	13
119	High Ion Exchange Capacity, Sulfonated Polybenzimidazoles. ACS Symposium Series, 2012, , 221-231.	0.5	3
120	Alternative Proton Exchange Membranes by Chain-Growth Polymerization. , 2012, , 651-689.		2
121	Solution-processed superhydrophobic conjugated polymer films. Soft Matter, 2012, 8, 5753.	1.2	10
122	A Stable Hydroxide-Conducting Polymer. Journal of the American Chemical Society, 2012, 134, 10753-10756.	6.6	327
123	Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network. Physical Chemistry Chemical Physics, 2011, 13, 18055.	1.3	54
124	Hydrocarbon proton conducting polymers for fuel cell catalyst layers. Energy and Environmental Science, 2011, 4, 1575.	15.6	89
125	Ionic Purity and Connectivity of Proton-Conducting Channels in Fluorous-Ionic Diblock Copolymers. Macromolecules, 2011, 44, 8845-8857.	2.2	35
126	Anion conducting poly(dialkyl benzimidazolium) salts. Polymer Chemistry, 2011, 2, 1641.	1.9	96

#	Article	IF	CITATIONS
127	Ï€-Conjugated polymers with thermocleavable substituents for use as active layers in organic photovoltaics. Polymer Chemistry, 2011, 2, 175-180.	1.9	20
128	PEMFC Catalyst Layers: The Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity. ACS Applied Materials & amp; Interfaces, 2011, 3, 1827-1837.	4.0	160
129	Enhancing the durability of polymer solar cells using gold nano-dots. Solar Energy Materials and Solar Cells, 2011, 95, 3106-3113.	3.0	8
130	Highly temperature dependent mass-transport parameters for ORR in Nafion® 211. Journal of Electroanalytical Chemistry, 2011, 651, 211-215.	1.9	12
131	Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers. Journal of Power Sources, 2011, 196, 179-181.	4.0	54
132	Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst layers. Journal of Power Sources, 2011, 196, 6168-6176.	4.0	47
133	Water Permeation Through Catalyst-Coated Membranes. Electrochemical and Solid-State Letters, 2010, 13, B51.	2.2	11
134	Structureâ€Morphologyâ€Property Relationships of Nonâ€Perfluorinated Proton onducting Membranes. Advanced Materials, 2010, 22, 4667-4690.	11.1	526
135	Fuel Cells: Structure-Morphology-Property Relationships of Non-Perfluorinated Proton-Conducting Membranes (Adv. Mater. 42/2010). Advanced Materials, 2010, 22, 4660-4660.	11.1	4
136	Properties of Nafion® NR-211 membranes for PEMFCs. Journal of Membrane Science, 2010, 356, 44-51.	4.1	246
137	Thickness dependence of water permeation through proton exchange membranes. Journal of Membrane Science, 2010, 364, 183-193.	4.1	70
138	Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94, 2258-2264.	3.0	62
139	Sulfonated polybenzimidazoles: Proton conduction and acid–base crosslinking. Journal of Polymer Science Part A, 2010, 48, 3640-3650.	2.5	64
140	Modeling the Effect of Annealing and Regioregularity on Electron and Hole Transport Characteristics of Bulk Heterojunction Organic Photovoltaic Devices. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	0
141	Microstructure–Performance Relationships of sPEEK-Based Catalyst Layers. Journal of the Electrochemical Society, 2010, 157, B1230.	1.3	18
142	Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation vs. self-organization. Polymer Chemistry, 2010, 1, 708.	1.9	48
143	On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers. ACS Applied Materials & Interfaces, 2010, 2, 375-384.	4.0	315
144	Directed Growth of 1D Assemblies of Perylene Diimide from a Conjugated Polymer. Chemistry of Materials, 2010, 22, 2287-2296.	3.2	16

#	Article	IF	CITATIONS
145	Toward Stabilization of Domains in Polymer Bulk Heterojunction Films. Chemistry of Materials, 2010, 22, 5371-5376.	3.2	73
146	High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]-phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices. Applied Physics Letters, 2009, 94, .	1.5	37
147	Factors Influencing Electrochemical Properties and Performance of Hydrocarbon-Based Electrolyte PEMFC Catalyst Layers. Journal of the Electrochemical Society, 2009, 156, B499.	1.3	49
148	Identification of Dominant Transport Mechanisms in PEMFC Cathode Catalyst Layers Operated under Low RH. ECS Transactions, 2009, 25, 1187-1192.	0.3	11
149	<i>Ex situ</i> Characterisation of Composite Nafion Membranes Containing Zirconium Hydrogen Phosphate. Fuel Cells, 2009, 9, 534-546.	1.5	22
150	Enhancement of Oxidative Stability of Polyfluorenes for Direct Thermal Lithography. Macromolecular Rapid Communications, 2009, 30, 2089-2095.	2.0	9
151	A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. Solar Energy Materials and Solar Cells, 2009, 93, 1968-1977.	3.0	205
152	Polymer Solar Cells Based on Alternating and Statistical 4,7-Bis(4-octylphenyl-2-thienyl)-2,1,3-benzothiadiazole Copolymers. Journal of Physical Chemistry C, 2009, 113, 8505-8512.	1.5	12
153	Correlation of In Situ and Ex Situ Measurements of Water Permeation Through Nafion NRE211 Proton Exchange Membranes. Journal of the Electrochemical Society, 2009, 156, B782.	1.3	68
154	Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts. Macromolecules, 2009, 42, 9467-9480.	2.2	116
155	Nanostructured Photovoltaic Devices from Thermally-Reactive π-Conjugated Polymer Blends. Chemistry of Materials, 2009, 21, 4631-4637.	3.2	12
156	Structure–property relationships for a series of polyimide copolymers with sulfonated pendant groups. Polymer, 2008, 49, 4949-4959.	1.8	44
157	Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the endâ€groups: Novel branched poly(etherâ€ketone)s with 3,6â€ditritylâ€9 <i>H</i> â€carbazole endâ€groups. Journal of Polymer Science Part A, 2008, 46, 3860-3868.	2.5	61
158	Bilayer Approach to Laserâ€Induced Thermal Patterning of Ï€â€Conjugated Polymers. Advanced Materials, 2008, 20, 2486-2490.	11.1	12
159	The effect of spatial confinement of Nafion® in porous membranes on macroscopic properties of the membrane. Journal of Membrane Science, 2008, 321, 100-113.	4.1	42
160	Transport properties of composite membranes containing silicon dioxide and Nafion®. Journal of Membrane Science, 2008, 325, 346-356.	4.1	83
161	Non-fluorinated proton-exchange membranes based on melt extruded SEBS/HDPE blends. Journal of Membrane Science, 2008, 325, 749-757.	4.1	24
162	Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. Journal of Electroanalytical Chemistry, 2008, 622, 145-152.	1.9	219

#	Article	IF	CITATIONS
163	Novel Organicâ^'Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application. Chemistry of Materials, 2008, 20, 6857-6870.	3.2	84
164	Fuel cell cathode catalyst layers from "green―catalyst inks. Energy and Environmental Science, 2008, 1, 184.	15.6	72
165	Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells. , 2008, , 55-126.		15
166	Contact effects and extraction of intrinsic parameters in poly(3-alkylthiophene) thin film field-effect transistors. Journal of Applied Physics, 2008, 103, .	1.1	38
167	Relationships of Acid and Water Content to Proton Transport in Statistically Sulfonated Proton Exchange Membranes:  Variation of Water Content Via Control of Relative Humidity. Journal of Physical Chemistry B, 2008, 112, 2848-2858.	1.2	71
168	Stabilizing Bicontinuous Nanophase Segregation in Ï€CPâ^'C ₆₀ Donorâ^'Acceptor Blends. Journal of the American Chemical Society, 2008, 130, 11711-11718.	6.6	49
169	Conjugated Polymers Bearing Iridium Complexes for Triplet Photovoltaic Devices. Chemistry of Materials, 2008, 20, 5351-5355.	3.2	83
170	Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups: Novel Branched Poly(etherâ^'ketone)s. Macromolecules, 2008, 41, 281-284.	2.2	148
171	Nafion Ionomer Aggregation and its Influence on Proton Conduction and Mass Transport in Fuel Cell Catalyst Layers. ECS Transactions, 2008, 16, 1811-1816.	0.3	16
172	Considerations of Macromolecular Structure in the Design of Proton Conducting Polymer Membranes:  Graft versus Diblock Polyelectrolytes. Journal of the American Chemical Society, 2007, 129, 15106-15107.	6.6	223
173	Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity. Journal of Materials Chemistry, 2007, 17, 3255.	6.7	203
174	Synthesis and Characterization of a Fullerene Bearing a Triazole Group. Chemistry of Materials, 2007, 19, 5194-5199.	3.2	8
175	Synthesis of Fluorous, Blockâ^'Brush Copolymers Containing Vinylidene Fluoride, Styrene, and Ethylene Oxide Blocks. Macromolecules, 2007, 40, 2295-2298.	2.2	12
176	Direct Thermal Patterning of a π-Conjugated Polymer. Chemistry of Materials, 2007, 19, 2155-2161.	3.2	23
177	Nanostructured Morphologies and Topologies of π-Conjugated Polymers from Thermally Reactive Polymer Blends. Advanced Materials, 2007, 19, 1697-1702.	11.1	26
178	Polythiopheneâ€ <i>graft</i> â€Styrene and Polythiopheneâ€ <i>graft</i> â€{Styreneâ€ <i>graft</i> _{60< Copolymers. Macromolecular Rapid Communications, 2007, 28, 1792-1797.}	/subչ) 2.0	54
179	Self-Assembly of Poly(9,9â€~-dihexylfluorene) to Form Highly Ordered Isoporous Films via Blending. Langmuir, 2006, 22, 3959-3961.	1.6	20
180	Highly Ordered Polymer Films of Amphiphilic, Regioregular Polythiophene Derivatives. Journal of Physical Chemistry B, 2006, 110, 15328-15337.	1.2	28

#	Article	IF	CITATIONS
181	Self-Assembly of Latex Particles into Proton-Conductive Membranes. Macromolecules, 2006, 39, 8060-8066.	2.2	23
182	Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy. Journal of the Electrochemical Society, 2006, 153, E173.	1.3	60
183	Enhancement of Phosphorescence of Ir Complexes Bound to Conjugated Polymers:  Increasing the Triplet Level of the Main Chain. Macromolecules, 2006, 39, 9157-9165.	2.2	76
184	Effect of Water on the Low Temperature Conductivity of Polymer Electrolytes. Journal of Physical Chemistry B, 2006, 110, 6072-6080.	1.2	144
185	Structural Study of Proton-Conducting Fluorous Block Copolymer Membranes. Macromolecules, 2006, 39, 720-730.	2.2	76
186	Dependence of methanol permeability on the nature of water and the morphology of graft copolymer proton exchange membranes. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2240-2252.	2.4	46
187	A study of linear versus angled rigid rod polymers for proton conducting membranes using sulfonated polyimides. European Polymer Journal, 2006, 42, 1075-1085.	2.6	24
188	High temperature PEM fuel cells. Journal of Power Sources, 2006, 160, 872-891.	4.0	914
189	Gas diffusion electrodes containing ZHP/Nafion for PEMFC operation at 120°C. Journal of Electroanalytical Chemistry, 2006, 596, 38-46.	1.9	9
190	Fluorinated Poly(aryl ether) Containing a 4-Bromophenyl Pendant Group and its Phosphonated Derivative. Macromolecular Rapid Communications, 2006, 27, 1411-1417.	2.0	57
191	Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design. Advanced Functional Materials, 2006, 16, 1814-1822.	7.8	174
192	A Comparative Study of the Structure/Property Relationships of Langmuir-Blodgett and Spin-Cast Films of an Amphiphilic, Regioregular Polythiophene Polymer. Materials Research Society Symposia Proceedings, 2006, 949, 1.	0.1	1
193	A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochimica Acta, 2005, 50, 3347-3358.	2.6	120
194	Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes. Fuel Cells, 2005, 5, 171-186.	1.5	174
195	Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2005, 152, A1171.	1.3	157
196	Influence of Membrane Ion Exchange Capacity on the Catalyst Layer Performance in an Operating PEM Fuel Cell. Journal of the Electrochemical Society, 2005, 152, A796.	1.3	43
197	Properties of Gas Diffusion Electrodes Containing Sulfonated Poly(ether ether ketone). Journal of the Electrochemical Society, 2005, 152, A752.	1.3	76
198	Self-Assembly of Surface-Charged Latex Nanoparticles:Â A New Route to the Creation of Continuous Channels for Ion Conduction. Macromolecules, 2005, 38, 5854-5856.	2.2	27

#	Article	IF	CITATIONS
199	Image Analysis and Modeling of Spherical and Channel Microstructures of Fuel-Cell Materials. IEEE Nanotechnology Magazine, 2005, 4, 616-631.	1.1	4
200	Photocuring and Photolithography of Proton-Conducting Polymers Bearing Weak and Strong Acids. Chemistry of Materials, 2005, 17, 387-394.	3.2	19
201	Synthesis, Solid-Phase Reaction, Optical Properties, and Patterning of Luminescent Polyfluorenes. Macromolecules, 2005, 38, 1114-1122.	2.2	27
202	Synthesis and Proton Conductivity of Partially Sulfonated Poly([vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	622 Td (d 2:2	ifluoride-co-ł 196
203	Variable current transport in polymer thin film transistors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 755.	0.9	10
204	Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2004, 151, A950.	1.3	126
205	Low-frequency noise in polymer thin-film transistors. IET Circuits, Devices and Systems, 2004, 151, 466.	0.6	29
206	Electrical Characterization of Polymer-Based FETs Fabricated by Spin-Coating Poly(3-alkylthiophene)s. IEEE Transactions on Electron Devices, 2004, 51, 1892-1901.	1.6	56
207	Enhancing Solid-State Emission from Conjugated Polymers via Self-Forming Host-Guest Systems. Advanced Materials, 2004, 16, 716-719.	11.1	23
208	A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells. Electrochimica Acta, 2004, 50, 725-730.	2.6	67
209	Numerical study of PEM fuel cell cathode with non-uniform catalyst layer. Electrochimica Acta, 2004, 50, 731-737.	2.6	59
210	Synthesis of poly[arylene ether sulfone-b-vinylidene fluoride] block copolymers. European Polymer Journal, 2004, 40, 531-541.	2.6	49
211	Photo-physical and electro-optical properties of polythiophenes bearing tetrahydropyran side groups. European Polymer Journal, 2004, 40, 2659-2664.	2.6	8
212	Numerical optimization study of the catalyst layer of PEM fuel cell cathode. Journal of Power Sources, 2004, 126, 104-111.	4.0	147
213	The role of membrane ion exchange capacity on membrane gas diffusion electrode interfaces: a half-fuel cell electrochemical study. Journal of Electroanalytical Chemistry, 2004, 567, 111-122.	1.9	31
214	Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes. Journal of Electroanalytical Chemistry, 2004, 568, 247-260.	1.9	81
215	Enhanced Blue-Violet Emission from Poly(fluorene-co-thiophene) Hostâ^'Guest Systems. Macromolecules, 2004, 37, 8897-8902.	2.2	46
216	Synthesis of Block Copolymers Possessing Fluoropolymer and Non-Fluoropolymer Segments by Radical Polymerization. Macromolecules, 2004, 37, 2084-2089.	2.2	76

#	Article	IF	CITATIONS
217	Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers:  Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes. Macromolecules, 2004, 37, 1678-1681.	2.2	181
218	Tuning Optical and Electroluminescent Properties of Poly(thiophene)s via Post-Functionalization. ACS Symposium Series, 2004, , 220-232.	0.5	4
219	Conductivity and Electrochemical ORR Mass Transport Properties of Solid Polymer Electrolytes Containing Poly(styrene sulfonic acid) Graft Chains. Journal of the Electrochemical Society, 2003, 150, E271.	1.3	32
220	Noise and charge transport in polymer thin film structures. , 2003, , .		0
221	Instability of the Noise Level in Polymer Field-Effect Transistors with Non-Stationary Electrical Characteristics. AIP Conference Proceedings, 2003, , .	0.3	2
222	Tuning Optical Properties and Enhancing Solid-State Emission of Poly(thiophene)s by Molecular Control:Â A Postfunctionalization Approach. Macromolecules, 2002, 35, 6900-6906.	2.2	163
223	Investigation of Barriers To Conformational Interchange in Oligothiophenes and Oligo(Thienyl)furans. Journal of Physical Chemistry A, 2002, 106, 1266-1276.	1.1	46
224	Conformational Analysis of Oligothiophenes and Oligo(thienyl)furans by Use of a Combined Molecular Dynamics/NMR Spectroscopic Protocol. Journal of Physical Chemistry A, 2002, 106, 1277-1285.	1.1	14
225	Synthesis, Solid-Phase Reaction, and Patterning of Acid-Labile 3,4-Ethylenedioxythiophene-Based Conjugated Polymers. Chemistry of Materials, 2002, 14, 3705-3714.	3.2	36
226	Control of Conjugation Length and Enhancement of Fluorescence Efficiency of Poly(p-phenylenevinylene)s via Post-halogenation. Chemistry of Materials, 2002, 14, 1424-1429.	3.2	27
227	Limiting Intersystem Crossing in Conjugated Polymers by Molecular Design. Advanced Materials, 2002, 14, 57-60.	11.1	15
228	Solid Polymer Electrolytes Based on Ionic Graft Polymers: Effect of Graft Chain Length on Nano-Structured, Ionic Networks. Advanced Functional Materials, 2002, 12, 389.	7.8	104
229	Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes:Â Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers. Macromolecules, 2002, 35, 1348-1355.	2.2	132
230	Morphologically Controlled Proton-Conducting Membranes Using Graft Polymers Possessing Block Copolymer Graft Chains. Australian Journal of Chemistry, 2002, 55, 461.	0.5	6
231	A Self-organized Network of Nanochannels Enhances Ion Conductivity through Polymer Films. Chemistry of Materials, 2001, 13, 2231-2233.	3.2	107
232	Facile Functionalization of Poly(3-alkylthiophene)s via Electrophilic Substitution. Macromolecules, 2001, 34, 141-143.	2.2	55
233	Chemically amplified soft lithography of a low band gap polymer. Chemical Communications, 2001, , 1274-1275.	2.2	23
234	A Novel and Versatile Methodology for Functionalization of Conjugated Polymers. Transformation of Poly(3-bromo-4-hexylthiophene) via Palladium-Catalyzed Coupling Chemistry. Macromolecules, 2001, 34, 3130-3132.	2.2	73

#	Article	IF	CITATIONS
235	Structural Order in Conjugated Organic Films Prepared by Catalytic Deprotection of Self-Assembled Polymers. Chemistry of Materials, 2001, 13, 526-529.	3.2	11
236	Synthesis of 3,4-Disubstituted Poly(thiophene)s via Substitution of Poly(3-alkylthiophene). Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	1
237	Patterning ï€-Conjugated Polymers. Advanced Materials, 2001, 13, 1753-1765.	11.1	243
238	Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,β,β-trifluorostyrene (BAM®) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers. Journal of Electroanalytical Chemistry, 2001, 501, 77-88.	1.9	53
239	Ionic conductivity of proton exchange membranes. Journal of Electroanalytical Chemistry, 2001, 503, 45-56.	1.9	146
240	Low-frequency noise in polymer transistors. IEEE Transactions on Electron Devices, 2001, 48, 1688-1695.	1.6	64
241	Patterning ï€-Conjugated Polymers. Advanced Materials, 2001, 13, 1753-1765.	11.1	2
242	LOW FREQUENCY NOISE IN POLYMER TRANSISTORS WITH NON-STATIONARY MOBILITY. , 2001, , .		2
243	Electrochemical Characterization of Ethylenetetrafluoroethylene-g-polystyrenesulfonic Acid Solid Polymer Electrolytes. Journal of the Electrochemical Society, 2000, 147, 4453.	1.3	62
244	Solid-State Thermolytic and Catalytic Reactions in Functionalized Regioregular Polythiophenes. Macromolecules, 2000, 33, 5073-5079.	2.2	46
245	Temperature and pressure dependence of O2 reduction at Ptâ^£Nafion® 117 and Ptâ^£BAM® 407 interfaces. Journal of Electroanalytical Chemistry, 1999, 468, 180-192.	1.9	161
246	Electrochemical oxygen reduction at composite films of Nafion®, polyaniline and Pt. Electrochimica Acta, 1999, 44, 2559-2569.	2.6	83
247	Effects on the Luminescence of Conjugated Systems. Macromolecules, 1999, 32, 6889-6891.	2.2	13
248	Solid-state electrochemical oxygen reduction at Pt â^£ Nafion® 117 and Pt â^£ BAM3Gâ,,¢ 407 interfaces. Journal of Electroanalytical Chemistry, 1998, 458, 1-5.	1.9	94
249	Solvato-Controlled Doping of Conducting Polymers. Chemistry of Materials, 1998, 10, 156-163.	3.2	18
250	Chemically amplified photolithography of a conjugated polymer. Chemical Communications, 1998, , 1503-1504.	2.2	40
251	Synthesis and properties of a sterically encumbered poly(thienylene vinylene): poly[<i>E</i> -1,2-(4,4prime-dihe×yl-2,2prime-dithienyl)ethylene]. Canadian Journal of Chemistry, 1998, 76, 1524-1529.	0.6	0
252	Solvato-Controlled Doping of Conducting Polymers: Enhanced Stabilty in Silver-Triflate Doped Films. Materials Research Society Symposia Proceedings, 1997, 488, 341.	0.1	0

#	Article	IF	CITATIONS
253	Interaction of Oxygen with Conjugated Polymers:Â Charge Transfer Complex Formation with Poly(3-alkylthiophenes). Journal of the American Chemical Society, 1997, 119, 4518-4524.	6.6	463
254	Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films. Synthetic Metals, 1997, 84, 87-88.	2.1	44
255	The role of impurities on the electron paramagnetic resonance response of polarons in conjugated polymers Synthetic Metals, 1997, 84, 885-886.	2.1	4
256	Poly(3-(2-acetoxyethyl)thiophene): A model polymer for acid-catalyzed lithography. Synthetic Metals, 1997, 85, 1427-1430.	2.1	15
257	Thermochromism and Band-Gap Tuning of Acrylated Poly(3-alkylthiophenes). Synthetic Metals, 1997, 84, 563-564.	2.1	13
258	A Phenomenological Model for Predicting Thermochromism of Regioregular and Nonregioregular Poly(3-alkylthiophenes). Macromolecules, 1996, 29, 6510-6517.	2.2	215
259	Gold-Decorated Poly(3-alkylthiophenes). Chemistry of Materials, 1996, 8, 26-31.	3.2	20
260	Regiochemical Analysis of Water Soluble Conductive Polymers:Â Sodium Poly(ω-(3-thienyl)alkanesulfonates). Macromolecules, 1996, 29, 5416-5421.	2.2	7
261	Synthesis and characterization of polymer-bound selenium coronands: enhancing the stability of reactive dications by restricting intermolecular interactions. Canadian Journal of Chemistry, 1996, 74, 533-543.	0.6	16
262	Photoelectrochemical Properties of Poly(3-alkylthiophene) Films in Aqueous Solution. The Journal of Physical Chemistry, 1996, 100, 5481-5484.	2.9	34
263	Strategies for Conducting Polymer Solutions: Solvato-Controlled Oxidative Doping Using Metal Cations. Materials Research Society Symposia Proceedings, 1995, 413, 497.	0.1	0
264	Poly(n-(3-thienyl)alkanesulfonates): Synthesis, Regioregularity, Morphology, and Photochemistry. Macromolecules, 1995, 28, 975-984.	2.2	45
265	Synthesis and Photolithography of Polymers and Copolymers Based on Poly(3-(2-(methacryloyloxy)ethyl)thiophene). Macromolecules, 1995, 28, 4608-4616.	2.2	70
266	Nature of Impurities in .piConjugated Polymers Prepared by Ferric Chloride and Their Effect on the Electrical Properties of Metal-Insulator-Semiconductor Structures. Chemistry of Materials, 1995, 7, 631-641.	3.2	97
267	Solid-state photochemistry of π-conjugated poly(3-alkylthiophenes). Canadian Journal of Chemistry, 1995, 73, 1893-1901.	0.6	67
268	Triplet emission from ?-conjugated polymers. Advanced Materials, 1994, 6, 325-327.	11.1	21
269	Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s. Advanced Materials, 1994, 6, 838-841.	11.1	78
270	Non-radiative decay channels in poly(3-hexylthiophene) and poly(3-dodecylthiophene) and how to control them by molecular engineering. Thin Solid Films, 1994, 243, 638-642.	0.8	12

#	Article	IF	CITATIONS
271	Phosphorescence and delayed fluorescence of poly(3-hexylthiophene) films. Thin Solid Films, 1994, 242, 174-177.	0.8	16
272	Photochemistry Of Electronically Conducting Poly(3-alkylthiophenes) Containing FeCl4- Counter Ions. Chemistry of Materials, 1994, 6, 962-968.	3.2	32
273	A Preparative Synthesis of Lumiphore-Labeled Polymers. Macromolecules, 1994, 27, 5487-5490.	2.2	7
274	Microlithography of π-conjugated polymers. , 1994, , .		2
275	Molecular control of luminescence from poly(3-hexylthiophenes). Macromolecules, 1993, 26, 4457-4460.	2.2	242
276	Synthesis and structure-property relationships of regioirregular poly(3-hexylthiophenes). Macromolecules, 1993, 26, 1163-1169.	2.2	138
277	First observation of phosphorescence from .piconjugated polymers. Journal of the American Chemical Society, 1993, 115, 8447-8448.	6.6	49
278	Oxidation of π-conjugated polymers with gold trichloride: enhanced stability of the electronically conducting state and electroless deposition of Au0. Synthetic Metals, 1993, 60, 93-96.	2.1	38
279	Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution. Macromolecules, 1993, 26, 2954-2962.	2.2	196
280	<title>Structural basis for luminescence from poly(3-alkylthiophenes)</title> .,1993,,.		1
281	Laser, direct-write microlithography of soluble polythiophenes. Synthetic Metals, 1992, 52, 159-170.	2.1	58
282	Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal–insulator–semiconductor field-effect transistors (MISFETs). Canadian Journal of Physics, 1992, 70, 1171-1177.	0.4	53
283	Grignard synthesis of π-conjugated poly(3-alkylthiophenes): controlling molecular weights and the nature of terminal units. Macromolecules, 1992, 25, 554-558.	2.2	56
284	Two-photon chemistry: facile synthesis of naphthalene- and anthracene-labelled polystyrene by photolysis of aromatic esters. Journal of the Chemical Society Chemical Communications, 1991, , 280.	2.0	1
285	Photochain scission of the soluble electronically conducting polymer: poly(3-hexylthiophene). Macromolecules, 1991, 24, 2119-2121.	2.2	20
286	Two-photon chemistry. 1. Fluorescence labeling of polystyrene and poly(methyl methacrylate) by laser photolysis of 2-naphthylmethyl 1-naphthylacetate. Macromolecules, 1991, 24, 1210-1212.	2.2	0
287	A photochemical study of poly(3-hexylthiophene). Macromolecules, 1991, 24, 4834-4838.	2.2	100
288	Photoimaging of electronically conducting polymeric networks. Chemistry of Materials, 1991, 3, 1003-1006.	3.2	44

#	Article	IF	CITATIONS
289	Determination of molecular weights and Mark–Houwink constants for soluble electronically conducting polymers. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 1585-1588.	2.4	64
290	Studies of photoinitiation and phototermination of free radical polymerization using dual pulsed laser techniques. Journal of Polymer Science Part A, 1991, 29, 729-737.	2.5	9
291	Studies of the photolysis of aromatic esters in solution and in polymer films. Journal of Polymer Science Part A, 1990, 28, 1495-1505.	2.5	6
292	Microemulsion polymerization of styrene: A study using pulsed laser initiation. Journal of Polymer Science Part A, 1990, 28, 1823-1829.	2.5	28
293	A photoassisted rechargeable cell with a polymer modifiedp-InP semiconductor anode and a polypyrrole cathode. Journal of Applied Electrochemistry, 1988, 18, 619-624.	1.5	5
294	Electrocatalytic effects of redox polymer films on the reduction of O2 on silicon semiconductors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 245, 191-199.	0.3	4
295	Preparation and electrocatalytic properties of conducting films of polypyrrole containing platinum microparticulates. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 240, 89-103.	0.3	207
296	The Energetics of Electron Transfer at the Polypyrrole/Silicon Interface. Journal of the Electrochemical Society, 1988, 135, 3106-3109.	1.3	5
297	Electrocatalytic reduction of O2 at electrodes modified by films of redox polymers with anthraquinone moieties. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 225, 177-186.	0.3	10
298	Preparation and Properties of Electrodes Modified by Polymeric Films with Pendant Anthraquinone Groups. Journal of the Electrochemical Society, 1985, 132, 2129-2133.	1.3	41
299	Studies of polymer-based field effect transistors. , 0, , .		2