
Shichao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186351/publications.pdf Version: 2024-02-01

<u> Сніснло М/п</u>

#	Article	IF	CITATIONS
1	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	23.7	277
2	Liquid Metal Remedies Silicon Microparticulates Toward Highly Stable and Superior Volumetric Lithium Storage. Advanced Energy Materials, 2022, 12, .	19.5	42
3	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	6
4	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
5	A bidirectional phase-transfer catalyst for Li-O2 batteries with high discharge capacity and low charge potential. Energy Storage Materials, 2022, 50, 564-571.	18.0	12
6	Integrating SEI into Layered Conductive Polymer Coatings for Ultrastable Silicon Anodes. Advanced Materials, 2022, 34, .	21.0	70
7	1000 Wh Lâ^'1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. National Science Review, 2021, 8, nwab012.	9.5	60
8	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendriteâ€Free Alkaliâ€Metal Battery. Advanced Materials, 2021, 33, e2101745.	21.0	32
9	A photo-assisted electrocatalyst coupled with superoxide suppression for high performance Li-O2 batteries. Nano Energy, 2021, 85, 105966.	16.0	27
10	Superior efficient rechargeable lithium–air batteries using a bifunctional biological enzyme catalyst. Energy and Environmental Science, 2020, 13, 144-151.	30.8	13
11	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	10.3	30
12	Constructing a High‣trength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	14.9	83
13	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	10.0	354
14	Designing a Multifunctional Separator for Highâ€Performance Li–S Batteries at Elevated Temperature. Small, 2019, 15, e1904332.	10.0	37
15	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	18.0	37
16	Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO ₂ â€MXene Heterostructures for Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900219.	19.5	481
17	NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O ₂ Battery with a Single-Ion-Conducting Separator. ACS Applied Materials & Interfaces, 2019, 11, 4908-4914.	8.0	14
18	Effective strategies for long-cycle life lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6155-6182.	10.3	157

Shichao Wu

#	Article	IF	CITATIONS
19	Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Advanced Functional Materials, 2018, 28, 1706374.	14.9	63
20	MOF-Based Separator in an Li–O ₂ Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Letters, 2018, 3, 463-468.	17.4	151
21	Clean Electrocatalysis in a Li ₂ O ₂ Redox-Based Li–O ₂ Battery Built with a Hydrate-Melt Electrolyte. ACS Catalysis, 2018, 8, 1082-1089.	11.2	23
22	A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium–oxygen batteries with non-carbon cathodes. Journal of Materials Chemistry A, 2018, 6, 9816-9822.	10.3	37
23	Li ₂ CO ₃ -free Li–O ₂ /CO ₂ battery with peroxide discharge product. Energy and Environmental Science, 2018, 11, 1211-1217.	30.8	120
24	Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. Energy Storage Materials, 2018, 11, 170-175.	18.0	51
25	Boosting the Cycle Life of Aprotic Li–O ₂ Batteries via a Photoâ€Assisted Hybrid Li ₂ O ₂ â€Scavenging Strategy. Small Methods, 2018, 2, 1700284.	8.6	47
26	Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium–Oxygen Batteries. Journal of Physical Chemistry Letters, 2018, 9, 6761-6766.	4.6	10
27	Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOFâ€Based Membrane in Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802130.	19.5	223
28	A Multifunctional Sillyâ€Putty Nanocomposite Spontaneously Repairs Cathode Composite for Advanced Liâ^'S Batteries. Advanced Functional Materials, 2018, 28, 1804777.	14.9	52
29	A Hybrid Electrolytes Design for Capacityâ€Equivalent Dualâ€Graphite Battery with Superior Longâ€Term Cycle Life. Advanced Energy Materials, 2018, 8, 1801120.	19.5	50
30	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and F GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	Promising 21.0	186
31	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie - International Edition, 2017, 56, 4960-4964.	13.8	133
32	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie, 2017, 129, 5042-5046.	2.0	31
33	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	17.4	102
34	Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule, 2017, 1, 359-370.	24.0	325
35	A Superâ€Hydrophobic Quasiâ€Solid Electrolyte for Liâ€O ₂ Battery with Improved Safety and Cycle Life in Humid Atmosphere. Advanced Energy Materials, 2017, 7, 1601759.	19.5	128
36	Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nature Communications, 2017, 8, 15607.	12.8	53

Shichao Wu

#	Article	IF	CITATIONS
37	A long-life lithium–sulphur battery by integrating zinc–organic framework based separator. Journal of Materials Chemistry A, 2016, 4, 16812-16817.	10.3	121
38	A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy and Environmental Science, 2016, 9, 3262-3271.	30.8	89
39	Metal–organic framework-based separator for lithium–sulfur batteries. Nature Energy, 2016, 1, .	39.5	1,059
40	A Synergistic System for Lithium–Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquidâ€Based Electrolyte. Advanced Functional Materials, 2016, 26, 3291-3298.	14.9	76
41	Cage-Type Highly Graphitic Porous Carbon–Co ₃ O ₄ Polyhedron as the Cathode of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2796-2804.	8.0	102
42	Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 8427-8435.	8.0	77
43	Interfacial construction of Li ₂ O ₂ for a performance-improved polymer Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2403-2407.	10.3	40
44	The water catalysis at oxygen cathodes of lithium–oxygen cells. Nature Communications, 2015, 6, 7843.	12.8	206
45	Low charge overpotentials in lithium–oxygen batteries based on tetraglyme electrolytes with a limited amount of water. Chemical Communications, 2015, 51, 16860-16863.	4.1	63
46	Reducing the charging voltage of a Li–O ₂ battery to 1.9 V by incorporating a photocatalyst. Energy and Environmental Science, 2015, 8, 2664-2667.	30.8	147
47	Preparation of ordered mesoporous WO3–TiO2 films and their performance as functional Pt supports for synergistic photo-electrocatalytic methanol oxidation. Journal of Power Sources, 2014, 248, 510-516.	7.8	34
48	Effects of platinum on photo-assisted electrocatalytic activity of fringe-shaped highly ordered mesoporous titanium dioxide film. Journal of Power Sources, 2012, 208, 58-66.	7.8	12
49	Fabrication and characterization of thermo-sensitive magnetic polymer composite nanoparticles. Journal of Magnetism and Magnetic Materials, 2012, 324, 1326-1330.	2.3	12
50	Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFCs. Journal of Materials Chemistry, 2011, 21, 2852.	6.7	21
51	Fabrication of continuous mesoporous organic–inorganic nanocomposite films for corrosion protection of stainless steel in PEM fuel cells. Corrosion Science, 2011, 53, 1498-1504.	6.6	24
52	Effect of Heat-treatment Temperature on the Structure and Properties of Li ₄ Ti ₅ O ₁₂ Nanorods Prepared by the Hydrothermal Ion Exchange Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 123-128.	1.3	2
53	Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites. Microporous and Mesoporous Materials, 2010, 134, 58-64.	4.4	50
54	A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. Journal of Power Sources, 2010, 195, 6854-6859.	7.8	126

#	Article	IF	CITATIONS
55	Microwave absorption properties and infrared emissivities of ordered mesoporous C–TiO2 nanocomposites with crystalline framework. Journal of Solid State Chemistry, 2010, 183, 2797-2804.	2.9	52
56	Direct Incorporation of Magnetic Constituents within Ordered Mesoporous Carbonâ^'Silica Nanocomposites for Highly Efficient Electromagnetic Wave Absorbers. Journal of Physical Chemistry C, 2010, 114, 7611-7617.	3.1	186