Catherine H Freudenreich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repeat instability during DNA repair: Insights from model systems. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 142-167.	2.3	158
2	An AT-Rich Sequence in Human Common Fragile Site FRA16D Causes Fork Stalling and Chromosome Breakage in S. cerevisiae. Molecular Cell, 2007, 27, 367-379.	4.5	156
3	Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes and Development, 2015, 29, 1006-1017.	2.7	109
4	Chromatin modifications and DNA repair: beyond double-strand breaks. Frontiers in Genetics, 2014, 5, 296.	1.1	104
5	Mutations in Yeast Replication Proteins That Increase CAG/CTG Expansions Also Increase Repeat Fragility. Molecular and Cellular Biology, 2003, 23, 7849-7860.	1.1	100
6	Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 2020, 586, 292-298.	13.7	95
7	SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nature Structural and Molecular Biology, 2009, 16, 159-167.	3.6	89
8	Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Research, 2012, 40, 1091-1105.	6.5	76
9	Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8392-E8401.	3.3	72
10	Saccharomyces cerevisiae Flap Endonuclease 1 Uses Flap Equilibration To Maintain Triplet Repeat Stability. Molecular and Cellular Biology, 2004, 24, 4049-4064.	1.1	69
11	Expanded CAG Repeats Activate the DNA Damage Checkpoint Pathway. Molecular Cell, 2004, 15, 287-293.	4.5	69
12	The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes and Cancer, 2019, 58, 270-283.	1.5	62
13	Double-Strand Break Repair Pathways Protect against CAG/CTG Repeat Expansions, Contractions and Repeat-Mediated Chromosomal Fragility in <i>Saccharomyces cerevisiae</i> . Genetics, 2010, 184, 65-77.	1.2	59
14	Role of recombination and replication fork restart in repeat instability. DNA Repair, 2017, 56, 156-165.	1.3	56
15	R-loops: targets for nuclease cleavage and repeat instability. Current Genetics, 2018, 64, 789-794.	0.8	50
16	Chromosome fragility: molecular mechanisms and cellular consequences. Frontiers in Bioscience - Landmark, 2007, 12, 4911.	3.0	48
17	Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2843-2848.	3.3	47
18	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	1.4	47

#	Article	IF	CITATIONS
19	Checkpoint responses to unusual structures formed by DNA repeats. Molecular Carcinogenesis, 2009, 48, 309-318.	1.3	45
20	NuA4 Initiates Dynamic Histone H4 Acetylation to Promote High-Fidelity Sister Chromatid Recombination at Postreplication Gaps. Molecular Cell, 2014, 55, 818-828.	4.5	45
21	Structure-Forming CAG/CTG Repeat Sequences are Sensitive to Breakage in the Absence of Mrc1 Checkpoint Function and S-Phase Checkpoint Signaling: Implications for Trinucleotide Repeat Expansion Diseases. Cell Cycle, 2004, 3, 1370-1374.	1.3	44
22	Relocalization of DNA lesions to the nuclear pore complex. FEMS Yeast Research, 2016, 16, fow095.	1.1	43
23	Relocation of Collapsed Forks to the Nuclear Pore Complex Depends on Sumoylation of DNA Repair Proteins and Permits Rad51 Association. Cell Reports, 2020, 31, 107635.	2.9	43
24	New Functions of Ctf18-RFC in Preserving Genome Stability outside Its Role in Sister Chromatid Cohesion. PLoS Genetics, 2011, 7, e1001298.	1.5	41
25	Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner. Gene, 2007, 393, 110-115.	1.0	38
26	Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes. Cell Reports, 2018, 22, 1200-1210.	2.9	36
27	RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility. Cell Reports, 2014, 6, 827-835.	2.9	34
28	Structure-forming repeats and their impact on genome stability. Current Opinion in Genetics and Development, 2021, 67, 41-51.	1.5	34
29	Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. Cell Reports, 2019, 27, 1151-1164.e5.	2.9	33
30	The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nature Communications, 2020, 11, 5643.	5.8	33
31	Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae. PLoS Genetics, 2011, 7, e1001339.	1.5	31
32	The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nature Communications, 2020, 11, 160.	5.8	31
33	Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Research, 2019, 47, 794-805.	6.5	29
34	The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions. DNA Repair, 2010, 9, 414-420.	1.3	22
35	Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats. Nucleic Acids Research, 2017, 45, 4519-4531.	6.5	22
36	Homologous recombination within repetitive DNA. Current Opinion in Genetics and Development, 2021, 71, 143-153.	1.5	17

3

Catherine H Freudenreich

#	ARTICLE	IF	CITATIONS
37	R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities. Journal of Biological Chemistry, 2020, 295, 13902-13913.	1.6	15
38	Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability. Genes, 2020, 11, 635.	1.0	15
39	The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in <i>Saccharomyces cerevisiae</i> . Genetics, 2018, 208, 963-976.	1.2	13
40	Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae. Methods in Molecular Biology, 2018, 1672, 403-419.	0.4	11
41	Genetic Assays to Study Repeat Fragility in Saccharomyces cerevisiae. Methods in Molecular Biology, 2020, 2056, 83-101.	0.4	8
42	Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126. ELife, 2019, 8, .	2.8	8
43	Rad9-mediated checkpoint activation is responsible for elevated expansions of GAA repeats in CST-deficient yeast. Genetics, 2021, 219, .	1.2	4
44	A Timeless Tale: G4 structure recognition by the fork protection complex triggers unwinding by <scp>DDX</scp> 11 helicase. EMBO Journal, 2020, 39, e106305.	3.5	3
45	Restarted replication forks are error-prone and cause CAG repeat expansions and contractions. PLoS Genetics, 2021, 17, e1009863.	1.5	1
46	Srs2 functions needed to replicate CAG/CTG hairpins and prevent repeat instability. FASEB Journal, 2012, 26, 741.2.	0.2	0
47	Characterization of the role of Srs2 human orthologs in triplet repeat maintenance. FASEB Journal, 2013, 27, 542.13.	0.2	0
48	Localization to the nuclear pore complex is required for stabilizing CAG repeats. FASEB Journal, 2015, 29, 878.9.	0.2	0
49	Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. SSRN Electronic Journal, 0, , .	0.4	0