Patricia K Kuhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BIRDSONG AND HUMAN SPEECH: Common Themes and Mechanisms. Annual Review of Neuroscience, 1999, 22, 567-631.	5.0	1,547
2	Early language acquisition: cracking the speech code. Nature Reviews Neuroscience, 2004, 5, 831-843.	4.9	1,483
3	Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9096-9101.	3.3	914
4	Human adults and human infants show a "perceptual magnet effect―for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 1991, 50, 93-107.	2.3	888
5	Acoustic determinants of infant preference for motherese speech. , 1987, 10, 279-293.		665
6	Foundations for a New Science of Learning. Science, 2009, 325, 284-288.	6.0	618
7	Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 979-1000.	1.8	593
8	Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 2006, 9, F13-F21.	1.3	574
9	Brain Mechanisms in Early Language Acquisition. Neuron, 2010, 67, 713-727.	3.8	558
10	Is speech learning â€~gated' by the social brain?. Developmental Science, 2007, 10, 110-120.	1.3	550
11	Speech Perception in Infancy Predicts Language Development in the Second Year of Life: A Longitudinal Study. Child Development, 2004, 75, 1067-1084.	1.7	452
12	A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 2003, 87, B47-B57.	1.1	432
13	Infant vocalizations in response to speech: Vocal imitation and developmental change. Journal of the Acoustical Society of America, 1996, 100, 2425-2438.	0.5	423
14	Speech perception by the chinchilla: Identification functions for synthetic VOT stimuli. Journal of the Acoustical Society of America, 1978, 63, 905-917.	0.5	403
15	Links between social and linguistic processing of speech in preschool children with autism: behavioral and electrophysiological measures. Developmental Science, 2005, 8, F1-F12.	1.3	382
16	Maternal speech to infants in a tonal language: Support for universal prosodic features in motherese Developmental Psychology, 1988, 24, 14-20.	1.2	380
17	An association between mothers' speech clarity and infants' speech discrimination skills. Developmental Science, 2003, 6, F1-F10.	1.3	310
18	Brain potentials to native and non-native speech contrasts in 7- and 11-month-old American infants. Developmental Science, 2005, 8, 162-172.	1.3	306

#	Article	IF	CITATIONS
19	Speech perception in early infancy: Perceptual constancy for spectrally dissimilar vowel categories. Journal of the Acoustical Society of America, 1979, 66, 1668-1679.	0.5	281
20	Mapping the perceptual magnet effect for speech using signal detection theory and multidimensional scaling. Journal of the Acoustical Society of America, 1995, 97, 553-562.	0.5	258
21	Learning and representation in speech and language. Current Opinion in Neurobiology, 1994, 4, 812-822.	2.0	234
22	Language experienced <i>in utero</i> affects vowel perception after birth: a twoâ€country study. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 156-160.	0.7	232
23	Look who's talking: speech style and social context in language input to infants are linked to concurrent and future speech development. Developmental Science, 2014, 17, 880-891.	1.3	230
24	Early Speech Perception and Later Language Development: Implications for the "Critical Period". Language Learning and Development, 2005, 1, 237-264.	0.7	229
25	Perception of auditory equivalence classes for speech in early infancy. , 1983, 6, 263-285.		218
26	Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 1983, 73, 1003-1010.	0.5	218
27	Infant speech perception activates Broca's area: a developmental magnetoencephalography study. NeuroReport, 2006, 17, 957-962.	0.6	217
28	Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 2008, 40, 1392-1401.	2.1	205
29	Infants' brain responses to speech suggest Analysis by Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11238-11245.	3.3	195
30	Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics, 2011, 39, 546-557.	0.6	194
31	Neural Substrates of Language Acquisition. Annual Review of Neuroscience, 2008, 31, 511-534.	5.0	193
32	Discrimination of speech by nonhuman animals: Basic auditory sensitivities conducive to the perception of speechâ€sound categories. Journal of the Acoustical Society of America, 1981, 70, 340-349.	0.5	183
33	Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception & Psychophysics, 1982, 32, 542-550.	2.3	158
34	Effects of language experience: Neural commitment to language-specific auditory patterns. Neurolmage, 2005, 26, 703-720.	2.1	156
35	Early Speech Perception and Later Language Development: Implications for the "Critical Period". Language Learning and Development, 2005, 1, 237-264.	0.7	156
36	Speech discrimination in 11â€monthâ€old bilingual and monolingual infants: a magnetoencephalography study. Developmental Science, 2017, 20, e12427.	1.3	150

#	Article	IF	CITATIONS
37	Relationships between quantity of language input and brain responses in bilingual and monolingual infants. International Journal of Psychophysiology, 2016, 110, 1-17.	0.5	143
38	Categorization of speech by infants: Support for speech-sound prototypes Developmental Psychology, 1989, 25, 577-588.	1.2	138
39	Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5212-5217.	3.3	132
40	Sustained and transient language control in the bilingual brain. NeuroImage, 2009, 47, 414-422.	2.1	117
41	The Impact of Early Social Interactions on Later Language Development in Spanish–English Bilingual Infants. Child Development, 2017, 88, 1216-1234.	1.7	116
42	Perception of native and non-native affricate-fricative contrasts: Cross-language tests on adults and infants. Journal of the Acoustical Society of America, 2006, 120, 2285-2294.	0.5	110
43	Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. NeuroImage, 2009, 46, 226-240.	2.1	109
44	Perceptual strategies in prelingual speech segmentation. Journal of Child Language, 1993, 20, 229-252.	0.8	102
45	Parent coaching increases conversational turns and advances infant language development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3484-3491.	3.3	102
46	Influences of phonetic identification and category goodness on American listeners' perception of /r/ and /l/. Journal of the Acoustical Society of America, 1996, 99, 1130-1140.	0.5	90
47	Investigating the role of infant-directed speech with a computer model. Acoustics Research Letters Online: ARLO, 2003, 4, 129-134.	0.7	89
48	Quantifying the Adequacy of Neural Representations for a Cross-Language Phonetic Discrimination Task: Prediction of Individual Differences. Cerebral Cortex, 2010, 20, 1-12.	1.6	86
49	Neural patterns to speech and vocabulary growth in American infants. NeuroReport, 2005, 16, 495-498.	0.6	83
50	Early Language Learning and Literacy: Neuroscience Implications for Education. Mind, Brain, and Education, 2011, 5, 128-142.	0.9	83
51	Two are better than one: Infant language learning from video improves in the presence of peers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9859-9866.	3.3	80
52	Cross-modal speech perception in adults and infants using nonspeech auditory stimuli Journal of Experimental Psychology: Human Perception and Performance, 1991, 17, 829-840.	0.7	78
53	Human speech and birdsong: Communication and the social brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9645-9646.	3.3	76
54	Age-related changes in acoustic modifications of Mandarin maternal speech to preverbal infants and five-year-old children: a longitudinal study. Journal of Child Language, 2009, 36, 909-922.	0.8	74

#	Article	IF	CITATIONS
55	Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 2016, 162, 1-9.	0.8	74
56	An event-related brain potential study of sentence comprehension in preschoolers: semantic and morphosyntactic processing. Cognitive Brain Research, 2005, 23, 247-258.	3.3	70
57	Perceptual magnet and phoneme boundary effects in speech perception: Do they arise from a common mechanism?. Perception & Psychophysics, 2000, 62, 874-886.	2.3	69
58	Brain Responses to Words in 2-Year-Olds with Autism Predict Developmental Outcomes at Age 6. PLoS ONE, 2013, 8, e64967.	1.1	68
59	Acoustic analysis of lexical tone in Mandarin infant-directed speech Developmental Psychology, 2007, 43, 912-917.	1.2	67
60	Brain white matter structure and <i>COMT</i> gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7249-7254.	3.3	66
61	Impact of secondâ€language experience in infancy: brain measures of first―and secondâ€language speech perception. Developmental Science, 2011, 14, 242-248.	1.3	65
62	Early gray-matter and white-matter concentration in infancy predict later language skills: A whole brain voxel-based morphometry study. Brain and Language, 2013, 124, 34-44.	0.8	64
63	Psychoacoustics and speech perception: Internal standards, perceptual anchors, and prototypes , 0, , 293-332.		64
64	Theta brain rhythms index perceptual narrowing in infant speech perception. Frontiers in Psychology, 2013, 4, 690.	1.1	60
65	Right Forceps Minor and Anterior Thalamic Radiation Predict Executive Function Skills in Young Bilingual Adults. Frontiers in Psychology, 2018, 9, 118.	1.1	60
66	Parent coaching at 6 and 10Âmonths improves language outcomes at 14Âmonths: A randomized controlled trial. Developmental Science, 2019, 22, e12762.	1.3	56
67	Look Who's Talking NOW! Parentese Speech, Social Context, and Language Development Across Time. Frontiers in Psychology, 2017, 8, 1008.	1.1	50
68	Social Interaction in Infants' Learning of Second-Language Phonetics: An Exploration of Brain–Behavior Relations. Developmental Neuropsychology, 2015, 40, 216-229.	1.0	49
69	Cognitive control factors in speech perception at 11 months Developmental Psychology, 2008, 44, 1505-1512.	1.2	48
70	Linguistic effect on speech perception observed at the brainstem. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8716-8721.	3.3	46
71	Magnetoencephalography is feasible for infant assessment of auditory discrimination. Experimental Neurology, 2004, 190, 44-51.	2.0	45
72	Sentence processing in 30-month-old children: an event-related potential study. NeuroReport, 2005, 16, 645-648.	0.6	40

#	Article	IF	CITATIONS
73	Language/Culture/Mind/Brain. Annals of the New York Academy of Sciences, 2001, 935, 136-174.	1.8	37
74	Foundations and Opportunities for an Interdisciplinary Science of Learning. , 2005, , 19-34.		31
75	Clarifying the Associations Between Language and Social Development in Autism: A Study of Non-native Phoneme Recognition. Journal of Autism and Developmental Disorders, 2007, 37, 1256-1263.	1.7	28
76	Early Language Learning and the Social Brain. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 211-220.	2.0	26
77	Cracking the speech code: How infants learn language. Acoustical Science and Technology, 2007, 28, 71-83.	0.3	23
78	Comparing Automatic and Manual Measures of Parent–Infant Conversational Turns: A Word of Caution. Child Development, 2021, 92, 672-681.	1.7	23
79	Mental Addition in Bilinguals: An fMRI Study of Task-Related and Performance-Related Activation. Cerebral Cortex, 2012, 22, 1851-1861.	1.6	22
80	Age-Specific Average Head Template for Typically Developing 6-Month-Old Infants. PLoS ONE, 2013, 8, e73821.	1.1	21
81	Infant-directed speech in English and Spanish: Assessments of monolingual and bilingual caregiver VOT. Journal of Phonetics, 2017, 63, 19-34.	0.6	21
82	Principal Component Analyses and Scalp Distribution of the Auditory P150–250 and N250–550 to Speech Contrasts in Mexican and American Infants. Developmental Neuropsychology, 2007, 31, 363-378.	1.0	18
83	Social Mechanisms in Early Language Acquisition: Understanding Integrated Brain Systems Supporting Language. , 2011, , .		18
84	Bilingual Baby: Foreign Language Intervention in Madrid's Infant Education Centers. Mind, Brain, and Education, 2017, 11, 133-143.	0.9	18
85	Infants' neural speech discrimination predicts individual differences in grammar ability at 6 years of age and their risk of developing speech-language disorders. Developmental Cognitive Neuroscience, 2021, 48, 100949.	1.9	16
86	Grammatical Processing without Semantics? An Event-related Brain Potential Study of Preschoolers using Jabberwocky Sentences. Journal of Cognitive Neuroscience, 2007, 19, 1050-1065.	1.1	15
87	Mothers say "baby―and their newborns do not choose to listen: a behavioral preference study to compare with ERP results. Frontiers in Human Neuroscience, 2015, 9, 153.	1.0	15
88	Who's Talking?. Science, 2011, 333, 529-530.	6.0	14
89	Effects of formant proximity and stimulus prototypicality on the neural discrimination of vowels: Evidence from the auditory frequency-following response. Brain and Language, 2019, 194, 77-83.	0.8	14
90	Using magnetoencephalography to examine word recognition, lateralization, and future language skills in 14-month-old infants. Developmental Cognitive Neuroscience, 2021, 47, 100901.	1.9	13

#	Article	IF	CITATIONS
91	On handedness in primates and human infants. Behavioral and Brain Sciences, 1988, 11, 727-729.	0.4	11
92	2. Event-related potential studies of early language processing at the phoneme, word, and sentence levels. Trends in Language Acquisition Research, 2008, , 23-64.	0.2	11
93	Development of infants' neural speech processing and its relation to later language skills: A MEG study. NeuroImage, 2022, 256, 119242.	2.1	9
94	Designing Virtual, Moderated Studies of Early Childhood Development. Frontiers in Psychology, 2021, 12, 740290.	1.1	8
95	Event-Related Potentials to an English/Spanish Syllabic Contrast in Mexican 10–13-Month-Old Infants. ISRN Neurology, 2012, 2012, 1-9.	1.5	7
96	Exposure to a second language in infancy alters speech production. Bilingualism, 2020, 23, 978-991.	1.0	7
97	Auditory deficits in infants at risk for dyslexia during a linguistic sensitive period predict future language. NeuroImage: Clinical, 2021, 30, 102578.	1.4	7
98	Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain and Cognition, 2019, 134, 122-134.	0.8	6
99	Early Second Language Learning through SparkLingâ,,¢: Scaling up a Language Intervention in Infant Education Centers. Mind, Brain, and Education, 2020, 14, 94-103.	0.9	6
100	Strength of Ventral Tegmental Area Connections With Left Caudate Nucleus Is Related to Conflict Monitoring. Frontiers in Psychology, 2020, 10, 2869.	1.1	5
101	Infant brain imaging using magnetoencephalography: Challenges, solutions, and best practices. Human Brain Mapping, 2022, 43, 3609-3619.	1.9	4
102	Effects of enriched auditory experience on infants' speech perception during the first year of life. Prospects, 2016, 46, 235-247.	1.3	3
103	Reduced Theta Sampling in Infants at Risk for Dyslexia across the Sensitive Period of Native Phoneme Learning. International Journal of Environmental Research and Public Health, 2022, 19, 1180.	1.2	2
104	The Effects of Age, Dosage, and Poverty on Second Language Learning through SparkLingTM in Infant Education Centers in Madrid, Spain. International Journal of Environmental Research and Public Health, 2021, 18, 12758.	1.2	1