Kaixing Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3185229/publications.pdf

Version: 2024-02-01

1163117 1474206 9 449 8 9 citations h-index g-index papers 9 9 9 430 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environmental Science & Eamp; Technology, 2021, 55, 4287-4304.	10.0	106
2	Highly Efficient and Selective Hg(II) Removal from Water Using Multilayered Ti ₃ C ₂ O <i>_x</i> MXene via Adsorption Coupled with Catalytic Reduction Mechanism. Environmental Science & Environme	10.0	92
3	Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS ₂ . ACS Applied Materials & Supplied Materials & Sup	8.0	82
4	Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. Environmental Science & Environment	10.0	62
5	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	7.6	61
6	Ultrastable MOF-based foams for versatile applications. Nano Research, 2022, 15, 2961-2970.	10.4	20
7	Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling. Journal of Hazardous Materials, 2022, 438, 129418.	12.4	14
8	Construction of metal-organic framework/polymer beads for efficient lead ions removal from water: Experiment studies and full-scale performance prediction. Chemosphere, 2022, 303, 135084.	8.2	8
9	Macro-structuring Uniform Metal–Organic Framework-Based Beads for Superselective Removal of Hg(II) from Water: Performance and Modeling. ACS ES&T Engineering, 2022, 2, 1544-1555.	7.6	4