
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3185139/publications.pdf Version: 2024-02-01

KDISTED HOLMBEDC

#	Article	IF	CITATIONS
1	Natural surfactants. Current Opinion in Colloid and Interface Science, 2001, 6, 148-159.	7.4	276
2	Water-in-diesel emulsions and related systems. Advances in Colloid and Interface Science, 2006, 123-126, 231-239.	14.7	262
3	Surfactant-templated nanomaterials synthesis. Journal of Colloid and Interface Science, 2004, 274, 355-364.	9.4	215
4	Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials, 2013, 6, 580-608.	2.9	215
5	Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Advances in Colloid and Interface Science, 2014, 205, 339-360.	14.7	198
6	Amino acid-based surfactants – do they deserve more attention?. Advances in Colloid and Interface Science, 2015, 222, 79-91.	14.7	163
7	Organic reactions in microemulsions. Current Opinion in Colloid and Interface Science, 2003, 8, 187-196.	7.4	144
8	Hydrotropes. Current Opinion in Colloid and Interface Science, 2016, 22, 99-107.	7.4	140
9	Dissolution and Gelation of Cellulose in TBAF/DMSO Solutions: The Roles of Fluoride Ions and Water. Biomacromolecules, 2009, 10, 2401-2407.	5.4	119
10	Influence of Surfactants on Lipase Fat Digestion in a Model Gastro-intestinal System. Food Biophysics, 2008, 3, 370-381.	3.0	102
11	Organic Reactions in Microemulsions. European Journal of Organic Chemistry, 2007, 2007, 731-742.	2.4	99
12	Cleavable surfactants. Current Opinion in Colloid and Interface Science, 2007, 12, 81-91.	7.4	99
13	Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions. Journal of Colloid and Interface Science, 2001, 241, 104-111.	9.4	95
14	Role of an Amide Bond for Self-Assembly of Surfactants. Langmuir, 2010, 26, 3077-3083.	3.5	92
15	Competition between Lipases and Monoglycerides at Interfaces. Langmuir, 2008, 24, 7400-7407.	3.5	91
16	Surfactants in water-borne paints. Progress in Organic Coatings, 1999, 35, 79-87.	3.9	90
17	Cleavable surfactants. Journal of Surfactants and Detergents, 2000, 3, 81-91.	2.1	88
18	Encapsulation of actives for sustained release. Physical Chemistry Chemical Physics, 2013, 15, 17727.	2.8	83

#	Article	IF	CITATIONS
19	Surfactant-templated mesostructured materials from inorganic silica. Soft Matter, 2005, 1, 219.	2.7	81
20	Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica—The effect of varied particle size and morphology. Colloids and Surfaces B: Biointerfaces, 2012, 100, 22-30.	5.0	81
21	Use of microcapsules as controlled release devices for coatings. Advances in Colloid and Interface Science, 2015, 222, 18-43.	14.7	80
22	Adsorption of Cationic Gemini Surfactants at Solid Surfaces Studied by QCM-D and SPR: Effect of the Rigidity of the Spacer. Langmuir, 2011, 27, 7549-7557.	3.5	78
23	Interactions between surfactants and hydrolytic enzymes. Colloids and Surfaces B: Biointerfaces, 2018, 168, 169-177.	5.0	78
24	Reactive surfactants in heterophase polymerization. VI. Synthesis and screening of polymerizable surfactants (surfmers) with varying reactivity in high solids styrene?butyl acrylate?acrylic acid emulsion polymerization. Journal of Applied Polymer Science, 1997, 66, 1803-1820.	2.6	77
25	Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. Journal of Colloid and Interface Science, 2003, 268, 348-356.	9.4	69
26	A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids and Surfaces B: Biointerfaces, 2011, 87, 464-471.	5.0	65
27	Size Control and Growth Process of Alkylamine-Stabilized Platinum Nanocrystals:Â A Comparison between the Phase Transfer and Reverse Micelles Methods. Langmuir, 2006, 22, 4863-4868.	3.5	63
28	Oxidation of cyclohexene into adipic acid in aqueous dispersions of mesoporous oxides with built-in catalytical sites. Green Chemistry, 2010, 12, 1861.	9.0	62
29	Surface modification for aluminium pigment inhibition. Advances in Colloid and Interface Science, 2006, 128-130, 121-134.	14.7	60
30	Deposition of Platinum Nanoparticles, Synthesized in Water-in-Oil Microemulsions, on Alumina Supports. Langmuir, 2002, 18, 1811-1818.	3.5	59
31	The Physicochemical Behavior of Phytosterol Ethoxylates. Journal of Colloid and Interface Science, 1999, 213, 112-120.	9.4	57
32	Heterogemini surfactants. Advances in Colloid and Interface Science, 2003, 100-102, 13-46.	14.7	57
33	Dispersion mechanisms in aqueous alumina suspensions at high solids loadings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 274, 100-109.	4.7	54
34	Comparison of a Cationic Gemini Surfactant and the Corresponding Monomeric Surfactant for Corrosion Protection of Mild Steel in Hydrochloric Acid. Journal of Surfactants and Detergents, 2011, 14, 605-613.	2.1	54
35	Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2015, 3, 6174-6184.	5.8	53
36	Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions. Langmuir, 2003, 19, 10073-10076.	3.5	52

#	Article	IF	CITATIONS
37	Hydrolyzable nonionic surfactants: Stability and physicochemical properties of surfactants containing carbonate, ester, and amide bonds. Journal of Colloid and Interface Science, 2005, 291, 570-576.	9.4	52
38	Charged microcapsules for controlled release of hydrophobic actives Part II: Surface modification by LbL adsorption and lipid bilayer formation on properly anchored dispersant layers. Journal of Colloid and Interface Science, 2013, 409, 8-17.	9.4	52
39	Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 32-41.	4.7	51
40	Flotation selectivity of novel alkyl dicarboxylate reagents for apatite–calcite separation. Journal of Colloid and Interface Science, 2015, 445, 40-47.	9.4	50
41	Mesoporous materials as host for an entrapped enzyme. Microporous and Mesoporous Materials, 2008, 110, 355-362.	4.4	48
42	Lipase reaction at interfaces as self-limiting processes. Comptes Rendus Chimie, 2009, 12, 163-170.	0.5	47
43	Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions. Journal of Colloid and Interface Science, 2016, 467, 253-260.	9.4	46
44	Nuclear magnetic resonance studies on hydrolysis kinetics and micellar growth in solutions of surface-active betaine esters. Journal of Surfactants and Detergents, 2004, 7, 239-246.	2.1	43
45	Counterion specificity of surfactants based on dicarboxylic amino acids. Journal of Colloid and Interface Science, 2009, 338, 529-536.	9.4	43
46	Fuel emulsions and microemulsions based on Fischer–Tropsch diesel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 91-98.	4.7	43
47	Admicellar polymerization of methyl methacrylate on aluminum pigments. Journal of Colloid and Interface Science, 2009, 337, 364-368.	9.4	41
48	Hydrolysis and biodegradation studies of surface-active esters. Journal of Surfactants and Detergents, 2003, 6, 319-324.	2.1	39
49	Dispersant Adsorption and Viscoelasticity of Alumina Suspensions Measured by Quartz Crystal Microbalance with Dissipation Monitoring and in Situ Dynamic Rheology. Langmuir, 2008, 24, 9989-9996.	3.5	39
50	Fischer–Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. Journal of Colloid and Interface Science, 2010, 352, 585-592.	9.4	39
51	Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C, 2014, 2, 994-1003.	5.5	39
52	Functional groups in fractionated asphaltenes and the adsorption of amphiphilic molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234, 95-102.	4.7	38
53	Surfactant inhibition of aluminium pigments for waterborne printing inks. Corrosion Science, 2008, 50, 2282-2287.	6.6	38
54	On the potential of using nanocellulose for consolidation of painting canvases. Carbohydrate Polymers, 2018, 194, 161-169.	10.2	37

#	Article	IF	CITATIONS
55	Synthesis and chemical hydrolysis of surface-active esters. Journal of Surfactants and Detergents, 2003, 6, 311-318.	2.1	35
56	Regioselective nitration of phenols and anisols in microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182, 321-327.	4.7	34
57	A substitution reaction in an oil-in-water microemulsion catalyzed by a phase transfer catalyst. Tetrahedron Letters, 2000, 41, 1245-1248.	1.4	33
58	Emulsion-based synthesis of porous silica. Advances in Colloid and Interface Science, 2017, 247, 426-434.	14.7	33
59	Impact of polymer surface affinity of novel antifouling agents. Biotechnology and Bioengineering, 2004, 86, 1-8.	3.3	32
60	Incorporation of platinum nanoparticles in ordered mesoporous carbon. Journal of Colloid and Interface Science, 2007, 305, 204-208.	9.4	32
61	Micellization of true amphoteric surfactants. Journal of Colloid and Interface Science, 2013, 411, 47-52.	9.4	32
62	Surface energy of noncorroded and corroded dental ceramic materials before and after contact with salivary proteins. European Journal of Oral Sciences, 1999, 107, 384-392.	1.5	30
63	Surfactants Containing Hydrolyzable Bonds. Advances in Polymer Science, 2008, , 57-82.	0.8	30
64	Study of the Pluronicâ^'Silica Interaction in Synthesis of Mesoporous Silica under Mild Acidic Conditions. Langmuir, 2010, 26, 1983-1990.	3.5	30
65	Synthesis, stability, and biodegradability studies of a surface-active amide. Journal of Surfactants and Detergents, 2005, 8, 331-336.	2.1	29
66	Adsorption of Sodium Dodecyl Sulfate and Sodium Dodecyl Phosphate on Aluminum, Studied by QCM-D, XPS, and AAS. Langmuir, 2008, 24, 13414-13419.	3.5	29
67	Adsorption of Dianionic Surfactants Based on Amino Acids at Different Surfaces Studied by QCM-D and SPR. Langmuir, 2010, 26, 10935-10942.	3.5	28
68	Fatty amide ethoxylates: Synthesis and self-assembly. Journal of Surfactants and Detergents, 2001, 4, 175-183.	2.1	27
69	The effect of pH on charge, swelling and desorption of the dispersant poly(methacrylic acid) from poly(methyl methacrylate) microcapsules. Journal of Colloid and Interface Science, 2012, 375, 213-215.	9.4	27
70	Combined Nanocellulose/Nanosilica Approach for Multiscale Consolidation of Painting Canvases. ACS Applied Nano Materials, 2018, 1, 2036-2040.	5.0	27
71	The use of surfactants in the cleaning of works of art. Current Opinion in Colloid and Interface Science, 2020, 45, 108-123.	7.4	27
72	Mixed Micellar Systems of Cleavable Surfactants. Langmuir, 2005, 21, 8658-8663.	3.5	26

#	Article	IF	CITATIONS
73	Charged microcapsules for controlled release of hydrophobic actives. Part I: encapsulation methodology and interfacial properties. Soft Matter, 2013, 9, 1468-1477.	2.7	26
74	A Nucleophilic Substitution Reaction Performed in Different Types of Self-Assembly Structures. Langmuir, 2004, 20, 6107-6115.	3.5	25
75	Use of cleavable surfactants for alkyl ketene dimer (AKD) dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 274, 200-210.	4.7	25
76	Sustained release of nucleic acids from polymeric nanoparticles using microemulsion precipitation in supercritical carbon dioxide. Chemical Communications, 2010, 46, 9034.	4.1	25
77	Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR—Effect of the presence of hydroxyl groups in the spacer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 21-27.	4.7	25
78	Charged microcapsules for controlled release of hydrophobic actives. Part III: the effect of polyelectrolyte brush- and multilayers on sustained release. Physical Chemistry Chemical Physics, 2013, 15, 6456.	2.8	25
79	A new method for the study of calcium carbonate growth on steel surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194, 49-55.	4.7	24
80	Self-Assembly of Ultralong Aligned Dipeptide Single Crystals. ACS Nano, 2017, 11, 10489-10494.	14.6	24
81	Oxidation of Self-Organized Nonionic Surfactants. Langmuir, 2004, 20, 3835-3837.	3.5	23
82	Water-in-Diesel Microemulsions Studied by NMR Diffusometry. Journal of Dispersion Science and Technology, 2009, 30, 881-891.	2.4	22
83	Phase-Transfer Agents as Catalysts for a Nucleophilic Substitution Reaction in Microemulsions. Chemistry - A European Journal, 2004, 10, 5460-5466.	3.3	21
84	Use of a Mesoporous Material for Organic Synthesis. Langmuir, 2005, 21, 3782-3785.	3.5	21
85	A nucleophilic substitution reaction in microemulsions based on either an alcohol ethoxylate or a sugar surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 163-170.	4.7	20
86	Comparison of PEIâ€PEG and PLLâ€PEG copolymer coatings on the prevention of protein fouling. Journal of Biomedical Materials Research - Part A, 2009, 88A, 608-615.	4.0	20
87	Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 420-427.	4.7	20
88	The cross-sectional headgroup area of nonionic surfactants; the influence of polydispersity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 180, 187-191.	4.7	19
89	Adsorption of Novel Alkylaminoamide Sugar Surfactants at Tailor-made Surfaces. Journal of Surfactants and Detergents, 2007, 10, 41-52.	2.1	19
90	Surface characterization of biomedical materials by measurement of electroosmosis. Biomaterials, 1998, 19, 423-440.	11.4	18

#	Article	IF	CITATIONS
91	Interactions between a lipase and charged surfactants — a comparison between bulk and interfaces. Advances in Colloid and Interface Science, 2000, 88, 223-241.	14.7	18
92	Oxidation of azo dyes in oil-in-water microemulsions catalyzed by metalloporphyrins in presence of lipophilic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185, 247-257.	4.7	18
93	1,4-Conjugate addition reaction catalyzed by a homogeneous rhodium catalyst entrapped in hydrophobized ordered mesoporous silica. Microporous and Mesoporous Materials, 2008, 116, 424-431.	4.4	18
94	A method to measure pH inside mesoporous particles using protein-bound SNARF1 fluorescent probe. Microporous and Mesoporous Materials, 2013, 165, 240-246.	4.4	18
95	Formation and relaxation kinetics of starch–particle complexes. Soft Matter, 2016, 12, 9509-9519.	2.7	18
96	Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays. Langmuir, 2017, 33, 2411-2419.	3.5	18
97	A reverse degradation vs. temperature relationship for a carbonate-containing gemini surfactant. Journal of Colloid and Interface Science, 2018, 531, 189-193.	9.4	18
98	Bromination in microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 51-54.	4.7	17
99	A carbon–carbon coupling reaction catalyzed by a water soluble rhodium catalyst entrapped in mesoporous silica. Microporous and Mesoporous Materials, 2007, 100, 146-153.	4.4	17
100	Polypeptide multilayer self-assembly and enzymatic degradation on tailored gold surfaces studied by QCM-D. Soft Matter, 2012, 8, 4788.	2.7	17
101	The Importance of Proper Anchoring of an Amphiphilic Dispersant for Colloidal Stability. Langmuir, 2012, 28, 4047-4050.	3.5	17
102	Bacteria-triggered degradation of nanofilm shells for release of antimicrobial agents. Journal of Materials Chemistry B, 2016, 4, 672-682.	5.8	17
103	The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous and Mesoporous Materials, 2009, 117, 126-135.	4.4	16
104	Micelle growth of cationic gemini surfactants studied by NMR and by time-resolved fluorescence quenching. Journal of Colloid and Interface Science, 2013, 405, 145-149.	9.4	16
105	Cleavable Surfactants: A Comparison between Ester, Amide, and Carbonate as the Weak Bond. Journal of Surfactants and Detergents, 2019, 22, 1139-1145.	2.1	16
106	Selective flotation of calcium minerals using double-headed collectors. Journal of Dispersion Science and Technology, 2019, 40, 1205-1216.	2.4	16
107	One-pot synthesis of porous gold nanoparticles by preparation of Ag/Au nanoparticles followed by dealloying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 823-829.	4.7	15
108	Competitive adsorption of amylopectin and amylose on cationic nanoparticles: a study on the aggregation mechanism. Soft Matter, 2016, 12, 3388-3397.	2.7	13

#	Article	IF	CITATIONS
109	Evaluation of the Adhesion and Performance of Natural Consolidants for Cotton Canvas Conservation. ACS Applied Materials & Interfaces, 2018, 10, 33652-33661.	8.0	13
110	Interactions between Lipases and Amphiphiles at Interfaces. Journal of Surfactants and Detergents, 2019, 22, 1047-1058.	2.1	13
111	Lipopolysaccharide removal by a peptide-functionalized surface. Colloids and Surfaces B: Biointerfaces, 2005, 40, 99-106.	5.0	12
112	Friedel–Crafts acylation of 2-methylindole with acetic anhydride using mesoporous HZSM-5. Journal of Molecular Catalysis A, 2013, 366, 64-73.	4.8	12
113	Epoxy Resin Monomers with Reduced Skin Sensitizing Potency. Chemical Research in Toxicology, 2014, 27, 1002-1010.	3.3	12
114	Accelerated ageing of cotton canvas as a model for further consolidation practices. Journal of Cultural Heritage, 2017, 28, 183-187.	3.3	12
115	Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton. Nanomaterials, 2020, 10, 900.	4.1	12
116	A ring-opening reaction performed in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 259-266.	4.7	11
117	Stabilization of Latex by Heterogemini Surfactants. Journal of Colloid and Interface Science, 2001, 241, 524-526.	9.4	11
118	Micellization and Adsorption of a Series of Fatty Amide Ethoxylates. Journal of Colloid and Interface Science, 2001, 242, 404-410.	9.4	11
119	Mesoporous Alumina Made from a Bicontinuous Liquid Crystalline Phase. Journal of Colloid and Interface Science, 2001, 241, 527-529.	9.4	11
120	Nonionic ortho ester surfactants as cleavable emulsifiers. Journal of Colloid and Interface Science, 2006, 299, 435-442.	9.4	11
121	An Ouzo emulsion of toluene in water characterized by NMR diffusometry and static multiple light scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 81-86.	4.7	11
122	Solution behavior of a surfactant aldehyde–the oxidation product of an alcohol ethoxylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 105-113.	4.7	10
123	NMR diffusometry and FTIR in the study of the interaction between antifouling agent and binder in marine paints. Progress in Organic Coatings, 2004, 51, 125-133.	3.9	10
124	Use of different types of mesoporous materials as tools for organic synthesis. Journal of Colloid and Interface Science, 2007, 310, 536-545.	9.4	10
125	Use of ordered mesoporous materials as tools for organic and bioorganic synthesis. Arkivoc, 2008, 2008, 107-118.	0.5	10
126	The binary phase behavior of short-chain PDMS-b-PEO diblock copolymers in aqueous solutions in dependence of the PDMS chain length—a combined polarized optical microscopy, 2H NMR and SAXS study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 254, 37-48.	4.7	9

#	Article	IF	CITATIONS
127	Bacterial protease triggered release of biocides from microspheres with an oily core. Colloids and Surfaces B: Biointerfaces, 2015, 127, 200-205.	5.0	9
128	Nanocellulose-based Materials for the Reinforcement of Modern Canvas-supported Paintings. Studies in Conservation, 2018, 63, 332-334.	1.1	9
129	An anomalous behavior of trypsin immobilized in alginate network. Applied Microbiology and Biotechnology, 2013, 97, 4403-4414.	3.6	8
130	The Effect on Solution Properties of Replacing a Hydrogen Atom with a Methyl Group in a Surfactant. Tenside, Surfactants, Detergents, 2015, 52, 369-374.	1.2	8
131	Reactions in Organised Surfactant Systems. , 0, , 148-179.		7
132	Polypeptide Multilayer Self-Assembly Studied by Ellipsometry. Journal of Drug Delivery, 2014, 2014, 1-5.	2.5	7
133	Chemical and enzymatic ester hydrolysis in a Winsor I system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 129-130, 273-277.	4.7	6
134	Synthesis of an amphiphilic polymer performed in an oil-in-water microemulsion and in a lamellar liquid crystalline phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 9-19.	4.7	6
135	Friedel–Crafts alkylation of sodium salicylate with 4-tert butylbenzyl chloride performed in aqueous dispersions of mesoporous oxides. Journal of Molecular Catalysis A, 2013, 366, 171-178.	4.8	6
136	Comparison of microporous/mesoporous and microporous HZSM-5 as catalysts for Friedel–Crafts alkylation of toluene with ethene. RSC Advances, 2014, 4, 28786.	3.6	6
137	Flotation Selectivity of Novel Alkyl Dicarboxylate Reagents for Calcite-Fluorite Separation. Tenside, Surfactants, Detergents, 2016, 53, 516-523.	1.2	6
138	Solution behaviour of a formate capped surfactant—the oxidation product of an alcohol ethoxylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160, 229-236.	4.7	5
139	Synthesis of stable colloidal suspensions of ordered mesostructured silica from sodium metasilicate using pluronic P123 and mildly acidic conditions. Studies in Surface Science and Catalysis, 2007, 165, 53-56.	1.5	5
140	Biodegradable Nanofilms on Microcapsules for Controlled Release of Drugs to Infected Chronic Wounds. Materials Today: Proceedings, 2015, 2, 118-125.	1.8	4
141	Surface chemistry and interface science. Physical Chemistry Chemical Physics, 2017, 19, 23568-23569.	2.8	4
142	Spontaneous Emulsification of Alkyl Ketene Dimer. Journal of Dispersion Science and Technology, 2001, 22, 569-581.	2.4	3
143	Dispersion Stability Evaluated by Experimental Design. Journal of Dispersion Science and Technology, 2001, 22, 297-309.	2.4	3
144	The effect of lignin on calcium carbonate scaling. Nordic Pulp and Paper Research Journal, 2006, 21, 286-289.	0.7	3

#	Article	IF	CITATIONS
145	Micellar induced regioselectivity in the two-step consecutive reaction of SO2â^'3 with Br(CH2CH2)nBr (). Journal of Colloid and Interface Science, 2007, 312, 453-459.	9.4	3
146	Towards a biosensor immunoassay of protein-bound isopeptides in human plasma. Colloids and Surfaces B: Biointerfaces, 2008, 66, 150-153.	5.0	3
147	Surface Treatment by Hydrophobic Particles: Influence of Starch and Ionic Strength. ACS Sustainable Chemistry and Engineering, 2017, 5, 6107-6115.	6.7	3
148	Liquid Crystalline Phases and Other Microheterogeneous Systems as Media for Organic Synthesis. Journal of Dispersion Science and Technology, 2007, 28, 73-79.	2.4	2
149	Water-Based Latex Dispersions. 5: NMR Relaxation Studies of Deuterium Labeled Nonylphenol Ethoxylate. Journal of Dispersion Science and Technology, 2009, 30, 873-880.	2.4	2
150	Parameters influencing hydrophobization of paper by surface sizing. Nordic Pulp and Paper Research Journal, 2018, 33, 95-104.	0.7	2
151	Additional Article Notification: Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C, 2014, 2, 3476.	5.5	0
152	The Scientist and the Forger. ChemistryViews, 0, , .	0.0	0