Yuxuan Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3185091/yuxuan-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

90 4,871 37 69 g-index

120 5,621 6.9 avg, IF 5.49 L-index

#	Paper	IF	Citations
90	Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091520	4.9	2
89	Sensitivity of PM to NO emissions and meteorology in North China based on observations. <i>Science of the Total Environment</i> , 2021 , 766, 142275	10.2	3
88	Variations of Siberian High Position under climate change: Impacts on winter pollution over North China 2021 , 169-190		
87	Fine particulate matter pollution in North China: Seasonal-spatial variations, source apportionment, sector and regional transport contributions. <i>Environmental Research</i> , 2020 , 184, 109368	7.9	19
86	Evaluating China's anthropogenic CO₂ emissions inventories: alhorthern China case study using continuous surface observations from 2005 to 2009. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3569-3588	6.8	2
85	Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10379-10400	6.8	8
84	Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 11065-110.	8 ^{6.8}	2
83	Changes of Emission Sources to Nitrate Aerosols in Beijing After the Clean Air Actions: Evidence From Dual Isotope Compositions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD0	o 3 4∮98	12
82	Identification of Sea Breeze Recirculation and Its Effects on Ozone in Houston, TX, During DISCOVER-AQ 2013. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033165	4.4	5
81	A large decline of tropospheric NO in China observed from space by SNPP OMPS. <i>Science of the Total Environment</i> , 2019 , 675, 337-342	10.2	18
80	Links Between the Large-Scale Circulation and Daily Air Quality Over Central Eastern China During Winter. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 7147	4.4	1
79	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6107-6123	6.8	82
78	Spatiotemporal Variations of Ambient Concentrations of Trace Elements in a Highly Polluted Region of China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 4186-4202	4.4	16
77	Evaluating the Response of Summertime Surface Sulfate to Hydroclimate Variations in the Continental United States: Role of Meteorological Inputs in the GEOS-Chem Model. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 1662-1679	4.4	2
76	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1357-1371	6.8	63
75	Surface MDA8 ozone variability during cold front events over the contiguous United States during 2003 2 017. <i>Atmospheric Environment</i> , 2019 , 213, 359-366	5.3	3
74	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing 2019 ,		2

73	Clustering Surface Ozone Diurnal Cycles to Understand the Impact of Circulation Patterns in Houston, TX. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 13457-13474	4.4	8
72	Mapping daily PM at 500 m resolution over Beijing with improved hazy day performance. <i>Science of the Total Environment</i> , 2019 , 659, 410-418	10.2	13
71	Drought Impacts on Secondary Organic Aerosol: A Case Study in the Southeast United States. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
70	Predicting daily PM concentrations in Texas using high-resolution satellite aerosol optical depth. <i>Science of the Total Environment</i> , 2018 , 631-632, 904-911	10.2	23
69	De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP. <i>Science of the Total Environment</i> , 2018 , 633, 608-617	10.2	13
68	Transport of Central American Fire Emissions to the U.S. Gulf Coast: Climatological Pathways and Impacts on Ozone and PM2.5. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 8344	4.4	5
67	Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003\(\textbf{Q} 016. \) Atmosphere, 2018 , 9, 159	2.7	9
66	Variations of Siberian High Position under climate change: Impacts on winter pollution over north China. <i>Atmospheric Environment</i> , 2018 , 189, 227-234	5.3	8
65	Winter haze over North China Plain from 2009 to 2016: Influence of emission and meteorology. <i>Environmental Pollution</i> , 2018 , 242, 1308-1318	9.3	48
64	Observational evidence for direct uptake of ozone in China by Asian dust in springtime. <i>Atmospheric Environment</i> , 2018 , 186, 45-55	5.3	4
63	Assessing biotic contributions to CO₂ fluxes in northern China using the Vegetation, Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to 2009. <i>Biogeosciences</i> , 2018 , 15, 6713-6729	4.6	6
62	Insignificant effect of climate change on winter haze pollution in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17489-17496	6.8	23
61	Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation 2018 ,		2
60	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 7423-7438	6.8	146
59	Effect of climate change on winter haze pollution in Beijing: uncertain and likely small 2018,		1
58	Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models 2018 ,		2
57	Impact of air pollution control policies on future PM concentrations and their source contributions in China. <i>Journal of Environmental Management</i> , 2018 , 227, 124-133	7.9	50
56	Estimates of Health Impacts and Radiative Forcing in Winter Haze in Eastern China through Constraints of Surface PM Predictions. <i>Environmental Science & Technology</i> , 2017 , 51, 2178-2185	10.3	46

55	Attribution of PM2.5 exposure in Beijing lanjin lebei region to emissions: implication to control strategies. <i>Science Bulletin</i> , 2017 , 62, 957-964	10.6	37
54	Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. <i>Atmospheric Environment</i> , 2017 , 170, 197-204	5.3	43
53	Adverse effects of increasing drought on air quality via natural processes. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12827-12843	6.8	26
52	The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture. <i>Frontiers in Microbiology</i> , 2017 , 8, 976	5.7	15
51	Influence of the Bermuda High on interannual variability of summertime ozone in the Houston alveston Brazoria region. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 15265-15276	6.8	23
50	A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts. <i>Geophysical Research Letters</i> , 2016 , 43, 9931-9938	4.9	24
49	Impact of the 2011 Southern U.S. Drought on Ground-Level Fine Aerosol Concentration in Summertime*. <i>Journals of the Atmospheric Sciences</i> , 2015 , 72, 1075-1093	2.1	14
48	Source attribution of particulate matter pollution over North China with the adjoint method. <i>Environmental Research Letters</i> , 2015 , 10, 084011	6.2	92
47	Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. <i>Environmental Science & Eamp; Technology</i> , 2015 , 49, 12280-8	10.3	203
46	Regional differences in Chinese SO₂ emission control efficiency and policy implications. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6521-6533	6.8	27
45	Estimating ground-level PM_{2.5} in eastern China using aerosol optical depth determined from the GOCI satellite instrument. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13133-131	1448	51
44	Simulating aerosolfadiationfloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2387-2404	6.8	82
43	Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. <i>Environmental Pollution</i> , 2014 , 190, 166-75	9.3	67
42	Global chemical composition of ambient fine particulate matter for exposure assessment. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	118
41	Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. <i>Atmospheric Environment</i> , 2014 , 99, 257-265	5.3	88
40	Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 10,425-10,440	4.4	188
39	Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4079-4086	6.8	22
38	Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9259-9277	6.8	26

(2011-2014)

37	Effects of a remotely sensed land cover dataset with high spatial resolution on the simulation of secondary air pollutants over china using the nested-grid GEOS-chem chemical transport model. <i>Advances in Atmospheric Sciences</i> , 2014 , 31, 179-187	2.9	3
36	Sensitivity of surface ozone over China to 2000\(\textit{D00}\)050 global changes of climate and emissions. <i>Atmospheric Environment</i> , 2013 , 75, 374-382	5.3	82
35	New Directions: GEIA's 2020 vision for better air emissions information. <i>Atmospheric Environment</i> , 2013 , 81, 710-712	5.3	18
34	Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. <i>Atmospheric Environment</i> , 2013 , 79, 853-860	5.3	19
33	Accelerating carbon uptake in the Northern Hemisphere: evidence from the interhemispheric difference of atmospheric CO2 concentrations. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2013 , 65, 20334	3.3	4
32	Sulfate-nitrate-ammonium aerosols over China: response to 2000 2 015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2635-2652	6.8	262
31	Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides. <i>Geophysical Research Letters</i> , 2013 , 40, 1021-1026	4.9	36
30	Top-down estimate of China's black carbon emissions using surface observations: Sensitivity to observation representativeness and transport model error. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5781-5795	4.4	22
29	Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. <i>Renewable Energy</i> , 2012 , 43, 30-36	8.1	81
28	Variations of surface O3 in August at a rural site near Shanghai: influences from the West Pacific subtropical high and anthropogenic emissions. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 4016-29	5.1	15
27	Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	54
26	Changes in tropospheric ozone levels over the Three Representative Regions of China observed from space by the Tropospheric Emission Spectrometer (TES), 2005\(\textstyle{1}\) 010. Science Bulletin, 2012, 57, 2865-2871		14
25	Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2725-2746	6.8	117
24	Nitrogen deposition to the United States: distribution, sources, and processes. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4539-4554	6.8	212
23	Can a Etate of the artichemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116,		43
22	Black carbon and its correlation with trace gases at a rural site in Beijing: Top-down constraints from ambient measurements on bottom-up emissions. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-	n/a	37
21	Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3511-3525	6.8	130
20	Ethane, ethyne and carbon monoxide concentrations in the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a comparison study. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9927-9941	6.8	22

19	Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2012/30 horizontal resolution over North America. <i>Atmospheric Environment</i> , 2011 , 45, 6769-6776	5.3	158
18	Year round measurements of O3 and CO at a rural site near Beijing: variations in their correlations. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2010 , 62, 228-241	3.3	11
17	Satellite detection and model verification of NO x emissions from power plants in Northern China. <i>Environmental Research Letters</i> , 2010 , 5, 044007	6.2	30
16	CO₂ and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8881-8897	6.8	103
15	Modeling dust and soluble iron deposition to the South Atlantic Ocean. <i>Journal of Geophysical Research</i> , 2010 , 115,		62
14	Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. <i>Journal of Geophysical Research</i> , 2010 , 115,		110
13	Review on the applications of Tropospheric Emissions Spectrometer to air-quality research: Perspectives for China. <i>Frontiers of Environmental Science and Engineering in China</i> , 2010 , 4, 12-19		3
12	Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China. <i>Remote Sensing of Environment</i> , 2010 , 114, 2575-2583	13.2	76
11	Potential for wind-generated electricity in China. <i>Science</i> , 2009 , 325, 1378-80	33.3	124
10	A quantitative assessment of uncertainties affecting estimates of global mean OH derived from methyl chloroform observations. <i>Journal of Geophysical Research</i> , 2008 , 113,		28
9	Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources. <i>Journal of Geophysical Research</i> , 2007 , 112,		77
8	Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. <i>Journal of Geophysical Research</i> , 2007 , 112,		189
7	Traffic restrictions associated with the Sino-African summit: Reductions of NOx detected from space. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	52
6	NOx emission trends for China, 1995\(\textit{0}004:\) The view from the ground and the view from space. Journal of Geophysical Research, \(\textit{2007}\), 112,		386
5	Human and animal wastes: Implications for atmospheric N2O and NOx. <i>Global Biogeochemical Cycles</i> , 2005 , 19, n/a-n/a	5.9	14
4	North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. <i>Journal of Geophysical Research</i> , 2005 , 110,		139
3	Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. <i>Journal of Geophysical Research</i> , 2005 , 110,		136
2	A nested grid formulation for chemical transport over Asia: Applications to CO. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		118

LIST OF PUBLICATIONS

Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data. *Journal of Geophysical Research*, **2004**, 109,

87