
Jiangfeng Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184973/publications.pdf Version: 2024-02-01

LIANCEENC NI

#	Article	lF	CITATIONS
1	<scp>Jahnâ€Teller</scp> Effect Directed Bandgap Tuning of Birnessite for Pseudocapacitive Application. Energy and Environmental Materials, 2023, 6, .	7.3	10
2	Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies. Electrochemical Energy Reviews, 2022, 5, 211-241.	13.1	44
3	Electrospinning for flexible sodium-ion batteries. Energy Storage Materials, 2022, 45, 704-719.	9.5	48
4	Rooting Zn into metallic Na bulk for energetic metal anode. Science China Materials, 2022, 65, 1789-1796.	3.5	9
5	Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. Advanced Science, 2022, 9, e2201209.	5.6	16
6	Boosting capacitive performance of nitrogen-doped carbon by atomically dispersed iron. Journal of Power Sources, 2022, 532, 231335.	4.0	15
7	Understanding the Role of Topotactic Anion Exchange in the Robust Cu Ion Storage of CuS _{1–<i>x</i>} Se _{<i>x</i>} . ACS Energy Letters, 2022, 7, 1835-1841.	8.8	13
8	The Critical Role of Carbon Nanotubes in Bridging Academic Research to Commercialization of Lithium Batteries. Chemical Record, 2022, 22, .	2.9	7
9	Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage. Journal of Materials Science and Technology, 2021, 67, 237-242.	5.6	26
10	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	4.6	71
11	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 339-352.	8.5	65
12	An Energetic CuS–Cu Battery System Based on CuS Nanosheet Arrays. ACS Nano, 2021, 15, 5420-5427.	7.3	66
13	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Fuels, 2021, 35, 8358-8364.	2.5	8
14	Back Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	8.5	0
15	Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink. Materials Research Bulletin, 2021, 139, 111266.	2.7	18
16	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	1.7	5
17	3D Vertical Arrays of Nanomaterials for Microscaled Energy Storage Devices. Accounts of Materials Research, 2021, 2, 1215-1226.	5.9	13
18	Theoretical Simulation and Modeling of Three-Dimensional Batteries. Cell Reports Physical Science, 2020, 1, 100078.	2.8	34

#	Article	IF	CITATIONS
19	Nature-inspired Cu2O@CoO tree-like architecture for robust storage of sodium. Journal of Materials Science and Technology, 2020, 53, 126-131.	5.6	16
20	Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 2020, 32, e2000288.	11.1	55
21	Three-Dimensional Microbatteries beyond Lithium Ion. Matter, 2020, 2, 1366-1376.	5.0	84
22	Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, 13, 1825-1841.	5.8	142
23	Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nature Communications, 2020, 11, 1212.	5.8	64
24	Durian-Inspired Design of Bismuth–Antimony Alloy Arrays for Robust Sodium Storage. ACS Nano, 2020, 14, 9117-9124.	7.3	71
25	Dualâ€Doped Hematite Nanorod Arrays on Carbon Cloth as a Robust and Flexible Sodium Anode. Advanced Functional Materials, 2020, 30, 1910043.	7.8	39
26	Anodic tantalum oxide: synthesis and energy-related applications. , 2020, , 305-319.		3
27	Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Builtâ€In Electric Field. Advanced Materials, 2019, 31, e1902603.	11.1	120
28	Ultrastable Sodium Storage in MoO ₃ Nanotube Arrays Enabled by Surface Phosphorylation. ACS Applied Materials & Interfaces, 2019, 11, 37761-37767.	4.0	29
29	Templateâ€Free Construction of Selfâ€Supported Sb Prisms with Stable Sodium Storage. Advanced Energy Materials, 2019, 9, 1901096.	10.2	57
30	Pencilâ€Drawing Skinâ€Mountable Microâ€Supercapacitors. Small, 2019, 15, e1804037.	5.2	42
31	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	8.2	78
32	Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor. Nanotechnology, 2018, 29, 195405.	1.3	15
33	Application of materials based on group VB elements in sodium-ion batteries: A review. Journal of Materials Science and Technology, 2018, 34, 1969-1976.	5.6	20
34	Phosphorus: An Anode of Choice for Sodium-Ion Batteries. ACS Energy Letters, 2018, 3, 1137-1144.	8.8	141
35	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	7.8	61
36	Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy, 2018, 45, 407-412.	8.2	63

#	Article	IF	CITATIONS
37	Boosting Sodium Storage in TiO ₂ Nanotube Arrays through Surface Phosphorylation. Advanced Materials, 2018, 30, 1704337.	11.1	201
38	Self‣upported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	7.8	108
39	Materials based on group IVA elements for alloying-type sodium storage. Science China Chemistry, 2018, 61, 1494-1502.	4.2	22
40	Editorial: Functional Materials for Next-Generation Rechargeable Batteries. Functional Materials Letters, 2018, 11, 1802001.	0.7	14
41	Frontispiece: Materials Based on Antimony and Bismuth for Sodium Storage. Chemistry - A European Journal, 2018, 24, .	1.7	0
42	Carbon nanoflakes as a promising anode for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1840011.	0.7	14
43	Hierarchical Porous Sb Films on 3D Cu Substrate Have Promise for Stable Sodium Storage. ACS Applied Energy Materials, 2018, 1, 3598-3602.	2.5	18
44	Materials Based on Antimony and Bismuth for Sodium Storage. Chemistry - A European Journal, 2018, 24, 13719-13727.	1.7	68
45	Heterostructure engineering of molybdenum chalcogenides for stable sodium storage. Materials Technology, 2018, 33, 543-547.	1.5	0
46	Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy, 2017, 33, 213-220.	8.2	155
47	Bismuth chalcogenide compounds Bi2×3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy, 2017, 34, 356-366.	8.2	179
48	Partially sulfurized MoO 2 film for durable lithium storage. Materials Research Bulletin, 2017, 96, 360-364.	2.7	7
49	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.	11.1	122
50	Lithium Iron Orthosilicate Cathode: Progress and Perspectives. ACS Energy Letters, 2017, 2, 1771-1781.	8.8	57
51	Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Research, 2017, 10, 3690-3697.	5.8	16
52	Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries. Nano Research, 2017, 10, 229-237.	5.8	37
53	Selfâ€5upported Nanotube Arrays of Sulfurâ€Doped TiO ₂ Enabling Ultrastable and Robust Sodium Storage. Advanced Materials, 2016, 28, 2259-2265.	11.1	457
54	Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1600278.	10.2	219

#	Article	IF	CITATIONS
55	Flexible supercapacitors based on a polyaniline nanowire-infilled 10 nm-diameter carbon nanotube porous membrane by in situ electrochemical polymerization. Journal of Materials Chemistry A, 2016, 4, 12602-12608.	5.2	41
56	Superior Sodium Storage in Na ₂ Ti ₃ O ₇ Nanotube Arrays through Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.	10.2	219
57	Hydrogenation Driven Conductive Na ₂ Ti ₃ O ₇ Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 4544-4551.	4.5	235
58	Sandwich structured MoO 2 @TiO 2 @CNT nanocomposites with high-rate performance for lithium ion batteries. Electrochimica Acta, 2015, 163, 57-63.	2.6	35
59	A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon, 2015, 92, 15-25.	5.4	68
60	LiNi0.5Mn1.5O4 synthesized through ammonia-mediated carbonate precipitation. Electrochimica Acta, 2015, 176, 1029-1035.	2.6	22
61	Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Scientific Reports, 2015, 5, 11958.	1.6	45
62	Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage. Scientific Reports, 2015, 5, 9307.	1.6	48
63	Temperature-driven structural evolution of carbon modified LiFePO ₄ in air. RSC Advances, 2015, 5, 30537-30541.	1.7	10
64	3D porous hierarchical Li ₂ FeSiO ₄ /C for rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 11782-11786.	5.2	36
65	A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability. Journal of Power Sources, 2015, 298, 138-143.	4.0	12
66	Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy, 2015, 11, 129-135.	8.2	199
67	Site-dependent electrochemical performance of Mg doped LiFePO4. Electrochemistry Communications, 2014, 44, 4-7.	2.3	55
68	Carbon nanotube-wired and oxygen-deficient MoO 3 nanobelts with enhanced lithium-storage capability. Journal of Power Sources, 2014, 247, 90-94.	4.0	92
69	One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Research, 2014, 7, 765-773.	5.8	105
70	Branch-structured Bi ₂ S ₃ –CNT hybrids with improved lithium storage capability. Journal of Materials Chemistry A, 2014, 2, 13854-13858.	5.2	82
71	TiO ₂ @C composite nanospheres with an optimized homogeneous structure for lithium-ion batteries. New Journal of Chemistry, 2014, 38, 3722-3728.	1.4	14
72	Strongly Coupled Bi ₂ S ₃ @CNT Hybrids for Robust Lithium Storage. Advanced Energy Materials, 2014, 4, 1400798.	10.2	159

#	Article	IF	CITATIONS
73	Improved electrochemical performance of sol–gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1939-1944.	1.2	57
74	Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. Journal of Materials Chemistry A, 2013, 1, 12879.	5.2	72
75	Investigation on a 3.2V LiCoPO4/Li4Ti5O12 full battery. Electrochemistry Communications, 2013, 35, 1-4.	2.3	25
76	One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochemistry Communications, 2013, 31, 84-87.	2.3	42
77	A high-performance hard carbon for Li-ion batteries and supercapacitors application. Journal of Power Sources, 2013, 223, 306-311.	4.0	135
78	High-performance CNT-wired MoO3 nanobelts for Li-storage application. Journal of Materials Chemistry A, 2013, 1, 4112.	5.2	57
79	Na0.44MnO2–CNT electrodes for non-aqueous sodium batteries. RSC Advances, 2013, 3, 6650.	1.7	75
80	Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. Journal of Power Sources, 2013, 221, 35-41.	4.0	75
81	A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification. Journal of Solid State Electrochemistry, 2012, 16, 2791-2796.	1.2	52
82	A high-performance LiCoPO4/C core/shell composite for Li-ion batteries. Electrochimica Acta, 2012, 70, 349-354.	2.6	75
83	Filter paper templated synthesis of chain-structured Li4Ti5O12/C composite for Li-ion batteries. Materials Letters, 2012, 78, 177-179.	1.3	17
84	Improved electrochemical activity of LiMnPO4 by high-energy ball-milling. Journal of Power Sources, 2011, 196, 8104-8109.	4.0	48
85	Effect of copper doping on LiMnPO4 prepared via hydrothermal route. Journal of Power Sources, 2011, 196, 6498-6501.	4.0	73
86	Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. Journal of Power Sources, 2010, 195, 2877-2882.	4.0	133
87	Pyroxene LiVSi2O6 as an electrode material for Li-ion batteries. Journal of Power Sources, 2010, 195, 8322-8326.	4.0	12
88	A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources, 2009, 188, 538-545.	4.0	142
89	Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. Journal of Power Sources, 2008, 177, 617-623.	4.0	61
90	Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. Journal of Solid State Chemistry, 2008, 181, 2620-2625.	1.4	42

#	Article	IF	CITATIONS
91	Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochimica Acta, 2008, 53, 3075-3083.	2.6	111
92	Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. Journal of Membrane Science, 2007, 297, 174-180.	4.1	107
93	Designing PEDOT-modified V6O13 nanosheet arrays for sodium storage. Functional Materials Letters, 0, , 2143001.	0.7	4
94	Self-supported TiO ₂ @P nanotube arrays as high-performance anodes for sodium-ion batteries. Functional Materials Letters, 0, , .	0.7	2
95	Boosting Sodium Storage of Titanium Oxide through Homojunction Design. Batteries and Supercaps, 0, , .	2.4	0