José G Planas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184409/publications.pdf

Version: 2024-02-01

56	1,215	21	32
papers	citations	h-index	g-index
56	56	56	1133 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Self-Assembly of Mercaptaneâ^'Metallacarborane Complexes by an Unconventional Cooperative Effect: A Câ^'H···Sâ^'H···Hâ^'B Hydrogen/Dihydrogen Bond Interaction. Journal of the American Chemical Society, 2005, 127, 15976-15982.	6.6	105
2	Switchable Surface Hydrophobicity–Hydrophilicity of a Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 16049-16053.	7.2	76
3	Synthesis, Structure, and Catalytic Applications for <i>ortho</i> - and <i>meta</i> -Carboranyl Based NBN Pincer-Pd Complexes. Inorganic Chemistry, 2014, 53, 9284-9295.	1.9	57
4	A Highly Water-Stable <i>meta</i> -Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. Journal of the American Chemical Society, 2020, 142, 8299-8311.	6.6	54
5	TRISPHAT Anion. An Efficient NMR Chiral Shift Counterion for Cationic Tricarbonyl Manganese Complexes with Planar Chirality. Organometallics, 2001, 20, 4107-4110.	1.1	43
6	N-Heterocyclic Pyridylmethylamines: Synthesis, Complexation, Molecular Structure, and Application to Asymmetric Suzuki–Miyaura and Oxidative Coupling Reactions. Organometallics, 2011, 30, 4074-4086.	1.1	42
7	An Unprecedented Stimuliâ€Controlled Singleâ€Crystal Reversible Phase Transition of a Metal–Organic Framework and Its Application to a Novel Method of Guest Encapsulation. Advanced Materials, 2018, 30, e1800726.	11.1	39
8	Generation and Reactions of Ruthenium Phosphido Complexes [(?5-C5H5)Ru(PR?3)2(PR2)]: Remarkably High Phosphorus Basicities and Applications as Ligands for Palladium-Catalyzed Suzuki Cross-Coupling Reactions. Chemistry - A European Journal, 2005, 11, 1402-1416.	1.7	37
9	Carborane Bis-pyridylalcohols as Linkers for Coordination Polymers: Synthesis, Crystal Structures, and Guest-Framework Dependent Mechanical Properties. Crystal Growth and Design, 2017, 17, 846-857.	1.4	36
10	Highly Bulky and Electron-Rich Terminal Ruthenium Phosphido Complexes:Â New Donor Ligands for Palladium-Catalyzed Suzuki Cross-Couplings. Inorganic Chemistry, 2002, 41, 6947-6949.	1.9	31
11	Supramolecular architectures in o-carboranyl alcohols bearing N-aromatic rings: syntheses, crystal structures and melting points correlation. CrystEngComm, 2011, 13, 5788.	1.3	31
12	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	3.2	27
13	Organochromium/organoiron dipoles comprising (î-6-arene)chromium and (î-5-cyclohexadienyl)iron(1+) complexes linked with conjugated spacers. Tetrahedron Letters, 2001, 42, 3311-3313.	0.7	26
14	C–O and C–S bond activation of allyl esters, ethers, and sulfides by low valent ruthenium complexes. Journal of Molecular Catalysis A, 1999, 147, 137-154.	4.8	25
15	B-Substituted (Arene)ruthenacarborane-Sulfonium, -Thioether and-Mercaptan Complexes: Mild Single and Double Dealkylation and Structural Implications in the Antipodal Distance. European Journal of Inorganic Chemistry, 2005, 2005, 4193-4205.	1.0	25
16	A Racemic and Enantiopure Unsymmetric Diiron(III) Complex with a Chiral <i>o</i> à€€arboraneâ€Based Pyridylalcohol Ligand: Combined Chiroptical, Magnetic, and Nonlinear Optical Properties. Chemistry - A European Journal, 2014, 20, 1081-1090.	1.7	25
17	Carbon–oxygen and carbon–sulfur bond activation of vinyl esters, ethers and sulfides by low valent ruthenium complexes â€. Dalton Transactions RSC, 2000, , 2613-2625.	2.3	24
18	Mild mono and double demethylation in dimethylsulfonium substituted ruthenacarborane complexes. A regioselective reaction. Dalton Transactions, 2004, , 2059-2061.	1.6	24

#	Article	IF	CITATIONS
19	Cooperative Effect of Carborane and Pyridine in the Reaction of Carboranyl Alcohols with Thionyl Chloride: Halogenation versus Oxidation. Journal of Organic Chemistry, 2008, 73, 9140-9143.	1.7	24
20	General Access to Aminobenzylâ€∢i>oàê€arboranes as a New Class of Carborane Derivatives: Entry to Enantiopure Carborane–Amine Combinations. Chemistry - A European Journal, 2009, 15, 12030-12042.	1.7	22
21	Self-Assembly of Halogenated Cobaltacarborane Compounds: Boron-Assisted CHâ‹â‹â‹XB Hydrogen Bonds?. Chemistry - A European Journal, 2007, 13, 2493-2502.	1.7	21
22	<i>closo</i> - <i>o</i> -Carboranylmethylamineâ^'Pyridine Associations: Synthesis, Characterization, and First Complexation Studies. Organometallics, 2010, 29, 4130-4134.	1.1	20
23	Binaphthyl platform as starting materials for the preparation of electron rich benzo[g,h,i]perylenes. Application to molecular architectures based on amino benzo[g,h,i]perylenes and carborane combinations. Chemical Communications, 2011, 47, 7725.	2.2	20
24	N,O-Type Carborane-Based Materials. Crystals, 2016, 6, 50.	1.0	20
25	Photoluminescence in <i>m</i> -carborane–anthracene triads: a combined experimental and computational study. Journal of Materials Chemistry C, 2018, 6, 11336-11347.	2.7	20
26	A boron–boron linked large metallacarborane cluster: Characterization and X-ray structure of 8,9′-[closo-{3-Co(η5-C5H5)-1,2-C2B9H10}]2. Journal of Organometallic Chemistry, 2006, 691, 3472-3476.	0.8	19
27	HKUST-1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO ₂ and CH ₄ Adsorption and Separation. ACS Applied Nano Materials, 2021, 4, 12712-12725.	2.4	19
28	C-S Bond Cleavage of Allyl Thioethers by Zerovalent Ru Complexes. Chemistry Letters, 1998, 27, 123-124.	0.7	17
29	Versatile Coordination Modes and Transformations of the Cyclooctatriene Ligand in Ru(C8H10)L3 (L =) Tj ETQq1	1 0 78431 1.1	14 ₁₇ gBT /Ove
30	Synthesis of New Chiral Heterobimetallic Chromiumâ^'Ruthenium Complexes by Regioselective Insertion of Ruthenium into the Câ^'S Bond of Tricarbonyl-η6-[(thiophenyl)arene]chromium Complexes. Organometallics, 2002, 21, 4385-4389.	1.1	17
31	Polymorphism and phase transformations in cobaltacarborane molecular crystals. CrystEngComm, 2007, 9, 888.	1.3	17
32	Metallosupramolecular Chemistry of Novel Chiral closo-o-Carboranylalcohol Pyridine and Quinoline Ligands: Syntheses, Characterization, and Properties of Cobalt Complexes. Crystal Growth and Design, 2012, 12, 5720-5736.	1.4	17
33	Is Molecular Chirality Connected to Supramolecular Chirality? The Particular Case of Chiral 2-Pyridyl Alcohols. Crystal Growth and Design, 2015, 15, 935-945.	1.4	17
34	Synthesis and characterization of heterodinuclear thiolate complexes containing the Pd(\hat{i} -3-allyl)+ moiety. Crystal structure of [(dppe)Pd(\hat{i} -4-SC6H4Me-p)2Pd(\hat{i} -3-C3H5)][ClO4]. Polyhedron, 2000, 19, 1627-1631.	1.0	16
35	Synthesis and Crystallographic Studies of Disubstituted Carboranyl Alcohol Derivatives: Prevailing Chiral Recognition?. Crystal Growth and Design, 2013, 13, 1473-1484.	1.4	16
36	Tuning the architectures and luminescence properties of Cu(<scp>i</scp>) compounds of phenyl and carboranyl pyrazoles: the impact of 2D <i>versus</i> 3D aromatic moieties in the ligand backbone. Journal of Materials Chemistry C, 2021, 9, 7643-7657.	2.7	16

#	Article	IF	CITATIONS
37	Regioselective 1,2-insertion of Ru into the C–S bond in 3-substituted thiophenes. Chemical Communications, 1999, , 1793-1794.	2.2	15
38	Crystal engineering of o-carboranyl alcohols: syntheses, crystal structures and thermal properties. CrystEngComm, 2010, 12, 4109.	1.3	15
39	Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material. Chemical Communications, 2021, 57, 2523-2526.	2.2	15
40	Reactivity of homoleptic and heteroleptic core paddle wheel Cu(II) compounds. Inorganica Chimica Acta, 2019, 487, 295-306.	1.2	13
41	Synthesis of tricarbonyl î-6- and î-5-[(3-thiophenyl)organo]chromium and -manganese complexes. Journal of Organometallic Chemistry, 2003, 688, 273-279.	0.8	12
42	Rational design of carborane-based Cu ₂ -paddle wheel coordination polymers for increased hydrolytic stability. Dalton Transactions, 2022, 51, 1137-1143.	1.6	11
43	Interplay of hydrogen bonding and π–π interactions in the molecular complex of 2,6-lutidine N-oxide and water. Journal of Molecular Structure, 2006, 787, 121-126.	1.8	9
44	Meso/microporous MOF@graphene oxide composite aerogels prepared by generic supercritical CO2 technology. Microporous and Mesoporous Materials, 2022, 335, 111825.	2.2	9
45	A Distinct Tetradentate N ₂ O ₂ â€type Ligand: (<i>o</i> à€Carboranyl)bis(2â€hydroxymethyl)pyridine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1194-1198.	0.6	8
46	Tuning the Structure and Flexibility of Coordination Polymers via Solvent Control of Tritopic Triazine Conformation during Crystallization. Crystal Growth and Design, 2020, 20, 3304-3315.	1.4	8
47	Synthesis, structures and properties of ironIII complexes with (o-carboranyl)bis-(2-hydroxymethyl)pyridine: Racemic versus meso. Inorganica Chimica Acta, 2016, 448, 97-103.	1.2	7
48	A Reversible Phase Transition of 2D Coordination Layers by B–Hâ^™â^™â^™Cu(II) Interactions in a Coordination Polymer. Molecules, 2019, 24, 3204.	1.7	7
49	Synthesis and solid state structure for a series of poly(1-pyrrolylmethyl)benzene derivatives. Control of the interplaying π–π and C–Hâ∢Ï€ interactions?. CrystEngComm, 2006, , .	1.3	6
50	Crystalline Inclusion Compounds of a Palladacyclic Tetraol Host Featuring ⟨i⟩o⟨/i⟩ arborane Units. European Journal of Inorganic Chemistry, 2017, 2017, 4589-4598.	1.0	4
51	Tuning the Liquid Crystallinity of Cholesteryl-o-Carborane Dyads: Synthesis, Structure, Photoluminescence, and Mesomorphic Properties. Crystals, 2021, 11, 133.	1.0	4
52	Copper complexes from 3,5-disubstituted N-hydroxyethylpyrazole ligands: Cleavage of C N bond as well as formation of second coordination sphere complexes. Polyhedron, 2022, 211, 115543.	1.0	3
53	Dimeric metallacycles and coordination polymers: Zn(II), Cd(II) and Hg(II) complexes of two positional isomers of a flexible N,O-hybrid bispyrazole derived ligand. Inorganica Chimica Acta, 2020, 506, 119549.	1.2	2
54	Broadening the scope of high structural dimensionality nanomaterials using pyridine-based curcuminoids. Dalton Transactions, 2021, 50, 7056-7064.	1.6	2

#	Article	lF	CITATIONS
55	Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. Advances in Catalysis, 2022, , 1-45.	0.1	2
56	Structure and properties ofo-carboranylalcohols pyridines metal complexes. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C368-C368.	0.3	1