
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mediator complex subunit 12 is a gatekeeper of SARS-CoV-2 infection in breast cancer cells. Genes and Diseases, 2022, 9, 5-8.	3.4	2
2	Ambient Temperature Stable, Scalable COVIDâ€19 Polymer Particle Vaccines Induce Protective Immunity. Advanced Healthcare Materials, 2022, 11, e2102089.	7.6	14
3	Durability of immune responses to the BNT162b2 mRNA vaccine. Med, 2022, 3, 25-27.	4.4	33
4	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
5	Long-term, infection-acquired immunity against the SARS-CoV-2 Delta variant in a hamster model. Cell Reports, 2022, 38, 110394.	6.4	9
6	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	30.7	577
7	Co-administration of Favipiravir and the Remdesivir Metabolite GS-441524 Effectively Reduces SARS-CoV-2 Replication in the Lungs of the Syrian Hamster Model. MBio, 2022, 13, e0304421.	4.1	17
8	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	27.8	917
9	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
10	Efficacy of vaccination and previous infection against the Omicron BA.1 variant in Syrian hamsters. Cell Reports, 2022, 39, 110688.	6.4	14
11	A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs. Viruses, 2022, 14, 562.	3.3	2
12	SARS-CoV-2 Interference of Influenza Virus Replication in Syrian Hamsters. Journal of Infectious Diseases, 2022, 225, 282-286.	4.0	25
13	mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med, 2022, 3, 309-324.e6.	4.4	6
14	Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Reports, 2022, 39, 110799.	6.4	39
15	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	12.4	21
16	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	27.8	174
17	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	12.8	93
18	Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathogens, 2021, 17, e1009033.	4.7	12

#	Article	IF	CITATIONS
19	SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. MBio, 2021, 12, .	4.1	81
20	Protective Immunity and Persistent Lung Sequelae in Domestic Cats after SARS-CoV-2 Infection. Emerging Infectious Diseases, 2021, 27, 660-663.	4.3	23
21	Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS Pathogens, 2021, 17, e1009373.	4.7	84
22	A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity, 2021, 54, 815-828.e5.	14.3	34
23	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics, 2021, 22, 287.	2.6	39
24	Multivalent nanoparticle-based vaccines protect hamsters against SARS-CoV-2 after a single immunization. Communications Biology, 2021, 4, 597.	4.4	35
25	Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 2021, 54, 1290-1303.e7.	14.3	101
26	The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265.	5.6	58
27	Specific COVID-19 Symptoms Correlate with High Antibody Levels against SARS-CoV-2. ImmunoHorizons, 2021, 5, 466-476.	1.8	23
28	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
29	Potent neutralization of <scp>SARSâ€CoV</scp> â€2 including variants of concern by vaccines presenting the receptorâ€binding domain multivalently from nanoscaffolds. Bioengineering and Translational Medicine, 2021, 6, e10253.	7.1	19
30	Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors Fcl ³ RIIA and Fcl ³ RIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages. MBio, 2021, 12, e0198721.	4.1	57
31	Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. Journal of Virology, 2021, 95, e0136821.	3.4	29
32	Comparative Sensitivity of Rapid Antigen Tests for the Delta Variant (B.1.617.2) of SARS-CoV-2. Viruses, 2021, 13, 2183.	3.3	8
33	Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike. MBio, 2021, 12, e0297521.	4.1	24
34	HER2-mediated enhancement of Ebola virus entry. PLoS Pathogens, 2020, 16, e1008900.	4.7	17
35	Formulation and production of a bloodâ€free and chemically defined virus production media for VERO cells. Biotechnology and Bioengineering, 2020, 117, 3277-3285.	3.3	3
36	Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nature Communications, 2020, 11, 5558.	12.8	39

#	Article	IF	CITATIONS
37	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	12.6	808
38	Repurposing Fragile X Drugs to Inhibit SARS-CoV-2 Viral Reproduction. Frontiers in Cell and Developmental Biology, 2020, 8, 856.	3.7	2
39	Transmission of SARS-CoV-2 in Domestic Cats. New England Journal of Medicine, 2020, 383, 592-594.	27.0	430
40	Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nature Communications, 2020, 11, 2953.	12.8	37
41	Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16587-16595.	7.1	912
42	Serological analysis of Ebola virus survivors and close contacts in Sierra Leone: A cross-sectional study. PLoS Neglected Tropical Diseases, 2019, 13, e0007654.	3.0	12
43	Isolation of Highly Pathogenic H5N1 Influenza Viruses in 2009–2013 in Vietnam. Frontiers in Microbiology, 2019, 10, 1411.	3.5	5
44	Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell, 2019, 177, 1566-1582.e17.	28.9	153
45	Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. Journal of Virology, 2019, 93, .	3.4	15
46	Plasma lipidome reveals critical illness and recovery from human Ebola virus disease. Proceedings of the United States of America, 2019, 116, 3919-3928.	7.1	62
47	Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. Journal of Virology, 2018, 92, .	3.4	36
48	The Induction of IL-1Î ² Secretion Through the NLRP3 Inflammasome During Ebola Virus Infection. Journal of Infectious Diseases, 2018, 218, S504-S507.	4.0	22
49	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	11.0	182
50	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	3.5	43
51	The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. Journal of Virology, 2016, 90, 3086-3092.	3.4	133
52	Ebola Virus Stability Under Hospital and Environmental Conditions. Journal of Infectious Diseases, 2016, 214, S142-S144.	4.0	13
53	Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. Journal of Virology, 2016, 90, 1839-1848.	3.4	33
54	Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection. Journal of Infectious Diseases, 2015, 212, S329-S335.	4.0	18

#	Article	IF	CITATIONS
55	Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nature Communications, 2015, 6, 7491.	12.8	91
56	An Ebola whole-virus vaccine is protective in nonhuman primates. Science, 2015, 348, 439-442.	12.6	81
57	Pseudoparticle Neutralization Assay for Detecting Ebola- Neutralizing Antibodies in Biosafety Level 2 Settings. Clinical Chemistry, 2015, 61, 885-886.	3.2	5
58	Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. Journal of Virology, 2015, 89, 10399-10406.	3.4	34
59	Ebola Conquers West Africa — More to Come?. EBioMedicine, 2014, 1, 2-3.	6.1	1
60	Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nature Communications, 2014, 5, 5021.	12.8	73
61	Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. Cell, 2013, 154, 763-774.	28.9	201
62	DNA Topoisomerase 1 Facilitates the Transcription and Replication of the Ebola Virus Genome. Journal of Virology, 2013, 87, 8862-8869.	3.4	29
63	The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Scientific Reports, 2013, 3, 1206.	3.3	123
64	The Cytoprotective Enzyme Heme Oxygenase-1 Suppresses Ebola Virus Replication. Journal of Virology, 2013, 87, 13795-13802.	3.4	81
65	Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus. Journal of Virology, 2012, 86, 2809-2816.	3.4	46
66	A shared structural solution for neutralizing ebolaviruses. Nature Structural and Molecular Biology, 2011, 18, 1424-1427.	8.2	113
67	The Ebolavirus VP24 Protein Blocks Phosphorylation of p38 Mitogen-Activated Protein Kinase. Journal of Infectious Diseases, 2011, 204, S953-S956.	4.0	40
68	Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathogens, 2010, 6, e1001121.	4.7	366
69	Replication-Deficient Ebolavirus as a Vaccine Candidate. Journal of Virology, 2009, 83, 3810-3815.	3.4	73
70	Generation of biologically contained Ebola viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1129-1133.	7.1	113
71	Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 2007, 445, 319-323.	27.8	892
72	Characterization of a Human H5N1 Influenza A Virus Isolated in 2003. Journal of Virology, 2005, 79, 9926-9932.	3.4	90

#	Article	IF	CITATIONS
73	Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature, 2004, 431, 703-707.	27.8	434
74	Genetic incompatibility among influenza A viruses. International Congress Series, 2001, 1219, 1019-1021.	0.2	0
75	Molecular Basis for High Virulence of Hong Kong H5N1 Influenza A Viruses. Science, 2001, 293, 1840-1842.	12.6	1,218
76	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	27.8	101