Yejiao Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184340/publications.pdf

Version: 2024-02-01

		840119	996533
15	384	11	15
papers	citations	h-index	g-index
15	15	15	744
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeted co-delivery of daunorubicin and cytarabine based on the hyaluronic acid prodrug modified liposomes. Chinese Chemical Letters, 2022, 33, 4600-4604.	4.8	22
2	Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chemical Biology, 2021, 2, 568-576.	2.0	4
3	Polymyxin Bâ€Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Advanced Healthcare Materials, 2021, 10, e2101465.	3.9	17
4	Unravelling the Enzymatic Degradation Mechanism of Supramolecular Peptide Nanofibers and Its Correlation with Their Internal Viscosity. Nano Letters, 2020, 20, 7375-7381.	4.5	12
5	An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Frontiers in Microbiology, 2020, 11, 998.	1.5	24
6	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	5.8	42
7	Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22661-22672.	4.0	21
8	Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules, 2019, 20, 1362-1374.	2.6	75
9	Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering. Biomaterials Science, 2019, 7, 5132-5142.	2.6	19
10	Targeted Delivery of Sildenafil for Inhibiting Pulmonary Vascular Remodeling. Hypertension, 2019, 73, 703-711.	1.3	29
11	Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods in Molecular Biology, 2018, 1758, 11-26.	0.4	6
12	Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chemical Communications, 2017, 53, 7037-7040.	2.2	31
13	Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly. Advances in Experimental Medicine and Biology, 2017, 1030, 265-278.	0.8	6
14	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	2.8	28
15	In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 2016, 21, 1367-1386.	3.2	48