
Yejiao Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184340/publications.pdf Version: 2024-02-01

Υείιλο Shi

#	Article	IF	CITATIONS
1	Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules, 2019, 20, 1362-1374.	5.4	75
2	In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 2016, 21, 1367-1386.	6.4	48
3	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	12.8	42
4	Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chemical Communications, 2017, 53, 7037-7040.	4.1	31
5	Targeted Delivery of Sildenafil for Inhibiting Pulmonary Vascular Remodeling. Hypertension, 2019, 73, 703-711.	2.7	29
6	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	5.6	28
7	An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Frontiers in Microbiology, 2020, 11, 998.	3.5	24
8	Targeted co-delivery of daunorubicin and cytarabine based on the hyaluronic acid prodrug modified liposomes. Chinese Chemical Letters, 2022, 33, 4600-4604.	9.0	22
9	Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. ACS Applied Materials & Interfaces, 2020, 12, 22661-22672.	8.0	21
10	Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering. Biomaterials Science, 2019, 7, 5132-5142.	5.4	19
11	Polymyxin Bâ€Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Advanced Healthcare Materials, 2021, 10, e2101465.	7.6	17
12	Unravelling the Enzymatic Degradation Mechanism of Supramolecular Peptide Nanofibers and Its Correlation with Their Internal Viscosity. Nano Letters, 2020, 20, 7375-7381.	9.1	12
13	Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly. Advances in Experimental Medicine and Biology, 2017, 1030, 265-278.	1.6	6
14	Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods in Molecular Biology, 2018, 1758, 11-26.	0.9	6
15	Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chemical Biology, 2021, 2, 568-576.	4.1	4