Ananda Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3183842/publications.pdf

Version: 2024-02-01

185998 174990 2,771 63 28 52 h-index citations g-index papers 64 64 64 3270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of 11βâ€Hydroxysteroid dehydrogenaseâ€1 with <scp>AZD4017</scp> in patients with nonalcoholic steatohepatitis or nonalcoholic fatty liver disease: A randomized, doubleâ€blind, placeboâ€controlled, phase <scp>II</scp> study. Diabetes, Obesity and Metabolism, 2022, 24, 881-890.	2.2	16
2	13C15N: glucagon-based novel isotope dilution mass spectrometry method for measurement of glucagon metabolism in humans. Clinical Proteomics, 2022, 19, 16.	1.1	1
3	Exercise Effect on Insulin-Dependent and Insulin-Independent Glucose Utilization in Healthy and Type 1 Diabetes Individuals. A Modeling Study American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E122-E129.	1.8	12
4	262-OR: Postprandial Glucagon Metabolism in Type 1 Diabetes. Diabetes, 2021, 70, 262-OR.	0.3	2
5	Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. Journal of Diabetes Science and Technology, 2020, 14, 1035-1064.	1.3	77
6	Hyperglycemia But Not Hyperinsulinemia Is Favorable for Exercise in Type 1 Diabetes: A Pilot Study. Diabetes Care, 2020, 43, 2176-2182.	4.3	11
7	Novel Insights Into Effects of Cortisol and Glucagon on Nocturnal Glucose Production in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2378-e2388.	1.8	2
8	A novel natural tracer method to measure complex carbohydrate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E483-E493.	1.8	7
9	Physiological models for artificial pancreas development. , 2019, , 123-152.		2
10	A novel measure of glucose homeostasis (or loss thereof) comprising the joint dynamics of glucose, insulin, glucagon, and cortisol. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E998-E1011.	1.8	3
11	Greater early postprandial suppression of endogenous glucose production and higher initial glucose disappearance is achieved with fastâ€acting insulin aspart compared with insulin aspart. Diabetes, Obesity and Metabolism, 2018, 20, 1615-1622.	2.2	28
12	Modeling the acute effects of exercise on insulin kinetics in type 1 diabetes. Journal of Pharmacokinetics and Pharmacodynamics, 2018, 45, 829-845.	0.8	7
13	Paradigm Shifts in Nocturnal Glucose Control in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3801-3809.	1.8	13
14	Importance of Artificial Pancreas Standard Nomenclature. Diabetes Technology and Therapeutics, 2017, 19, 323-323.	2.4	0
15	Continuous Glucose Monitor Interference With Commonly Prescribed Medications: A Pilot Study. Journal of Diabetes Science and Technology, 2017, 11, 936-941.	1.3	52
16	Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia. Diabetes Care, 2017, 40, 1719-1726.	4.3	68
17	Men Are from Mars, Women Are from Venus: Sex Differences in Insulin Action and Secretion. Advances in Experimental Medicine and Biology, 2017, 1043, 53-64.	0.8	24
18	Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1954-1962.	1.8	24

#	Article	IF	CITATIONS
19	Doseâ€Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Pointâ€ofâ€Care Diagnostics of Many Nonâ€Glucose Targets in a Single Step. Angewandte Chemie - International Edition, 2016, 55, 732-736.	7.2	88
20	Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology and Therapeutics, 2016, 18, 505-511.	2.4	71
21	Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study. Diabetes Technology and Therapeutics, 2016, 18, S2-43-S2-47.	2.4	63
22	Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1106-E1115.	1.8	59
23	Association between serum albumin and glycated hemoglobin in Asian Indian subjects. Indian Journal of Endocrinology and Metabolism, 2015, 19, 52.	0.2	9
24	Modeling Plasma-to-Interstitium Glucose Kinetics from Multitracer Plasma and Microdialysis Data. Diabetes Technology and Therapeutics, 2015, 17, 825-831.	2.4	31
25	Insulin:Carbohydrate Ratioâ€"Part of the Story. Diabetes Technology and Therapeutics, 2015, 17, 851-853.	2.4	1
26	$11\hat{1}^2$ -Hydroxysteroid Dehydrogenase Types 1 and 2 Activity in Subcutaneous Adipose Tissue in Humans: Implications in Obesity and Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E70-E76.	1.8	29
27	Effect of hypoxia on heart rate variability and baroreflex sensitivity during hypoglycemia in type 1 diabetes mellitus. Clinical Autonomic Research, 2015, 25, 243-250.	1.4	14
28	Effect of Bilateral Carotid Body Resection on Cardiac Baroreflex Control of Blood Pressure During Hypoglycemia. Hypertension, 2015, 65, 1365-1371.	1.3	28
29	Technology Use for Problem Solving in Adolescent Type 1 Diabetes. Diabetes Technology and Therapeutics, 2015, 17, 443-444.	2.4	3
30	Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. Diabetes Technology and Therapeutics, 2015, 17, 587-595.	2.4	16
31	Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E474-E486.	1.8	15
32	Adjustment of Open-Loop Settings to Improve Closed-Loop Results in Type 1 Diabetes: A Multicenter Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3878-3886.	1.8	67
33	Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E161-E167.	1.8	17
34	Cybersecurity in Artificial Pancreas Experiments. Diabetes Technology and Therapeutics, 2015, 17, 664-666.	2.4	31
35	Glucocorticoid Excess Increases Hepatic $11\hat{l}^2$ -HSD-1 Activity in Humans: Implications in Steroid-Induced Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4155-4162.	1.8	17
36	Relationship Between Glycemic Control and Gastric Emptying in Poorly Controlled Type 2 Diabetes. Clinical Gastroenterology and Hepatology, 2015, 13, 466-476.e1.	2.4	75

#	Article	IF	Citations
37	Effect of Carotid Body Resection on Baroreflex Control of Blood Pressure During Hypoglycemia. FASEB Journal, 2015, 29, 652.3.	0.2	0
38	Increased Nutrient Sensitivity and Plasma Concentrations of Enteral Hormones During Duodenal Nutrient Infusion in Functional Dyspepsia. American Journal of Gastroenterology, 2014, 109, 1910-1920.	0.2	31
39	GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clinical Science, 2014, 127, 163-170.	1.8	64
40	Quantitative Estimation of Insulin Sensitivity in Type 1 Diabetic Subjects Wearing a Sensor-Augmented Insulin Pump. Diabetes Care, 2014, 37, 1216-1223.	4.3	43
41	Effects of delayed gastric emptying on postprandial glucose kinetics, insulin sensitivity, and \hat{l}^2 -cell function. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E494-E502.	1.8	26
42	A Summary and Critical Assessment of the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Disease Risk in Adults: Filling the Gaps. Mayo Clinic Proceedings, 2014, 89, 1257-1278.	1.4	35
43	Hepatic $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 activity in obesity and type 2 diabetes using a novel triple tracer cortisol technique. Diabetologia, 2014, 57, 1446-1455.	2.9	12
44	Diurnal Pattern of Insulin Action in Type 1 Diabetes. Diabetes, 2013, 62, 2223-2229.	0.3	94
45	Postprandial glucose fluxes and insulin sensitivity during exercise: A study in healthy individuals. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E557-E566.	1.8	36
46	Diurnal Pattern to Insulin Secretion and Insulin Action in Healthy Individuals. Diabetes, 2012, 61, 2691-2700.	0.3	195
47	Reply from Erica A. Wehrwein, Rita Basu, Ananda Basu, Timothy B. Curry, Robert A. Rizza and Michael J. Joyner. Journal of Physiology, 2011, 589, 1237-1238.	1.3	0
48	Meal Fat Storage in Subcutaneous Adipose Tissue: Comparison of Pioglitazone and Glipizide Treatment of Type 2 Diabetes. Obesity, 2010, 18, 2058-2060.	1.5	4
49	Effects of Type 2 Diabetes on Insulin Secretion, Insulin Action, Glucose Effectiveness, and Postprandial Glucose Metabolism. Diabetes Care, 2009, 32, 866-872.	4.3	109
50	Liver Is the Site of Splanchnic Cortisol Production in Obese Nondiabetic Humans. Diabetes, 2009, 58, 39-45.	0.3	58
51	A patient-adjusted insulin algorithm was non-inferior to standard of care for glycaemic control in type 2 diabetes. Evidence-Based Medicine, 2008, 13, 78-78.	0.6	0
52	Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1289-E1295.	1.8	190
53	Lack of an Effect of Pioglitazone or Glipizide on Lipoprotein-Associated Phospholipase A2 in Type 2 Diabetes. Endocrine Practice, 2007, 13, 147-152.	1.1	14
54	Vildagliptin was effective as add-on therapy in type 2 diabetes inadequately controlled with metformin monotherapy. ACP Journal Club, 2007, 147, 47.	0.1	0

#	Article	IF	CITATIONS
55	Vildagliptin was effective as add-on therapy in type 2 diabetes inadequately controlled with metformin monotherapy. ACP Journal Club, 2007, 147, 47.	0.1	О
56	Insulin Autoimmunity and Hypoglycemia in Seven White Patients. Endocrine Practice, 2005, 11, 97-103.	1.1	57
57	Splanchnic Cortisol Production Occurs in Humans: Evidence for Conversion of Cortisone to Cortisol Via the 11-Â Hydroxysteroid Dehydrogenase (11Â-HSD) Type 1 Pathway. Diabetes, 2004, 53, 2051-2059.	0.3	102
58	Insulin Dose-Response Curves for Stimulation of Splanchnic Glucose Uptake and Suppression of Endogenous Glucose Production Differ in Nondiabetic Humans and Are Abnormal in People With Type 2 Diabetes. Diabetes, 2004, 53, 2042-2050.	0.3	86
59	Effects of Type 2 Diabetes on the Regulation of Hepatic Glucose Metabolism. Journal of Investigative Medicine, 2004, 52, 366-374.	0.7	24
60	Use of a novel triple-tracer approach to assess postprandial glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E55-E69.	1.8	158
61	Systemic and regional free fatty acid metabolism in type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E1000-E1006.	1.8	114
62	Lack of Suppression of Glucagon Contributes to Postprandial Hyperglycemia in Subjects with Type 2 Diabetes Mellitus ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4053-4059.	1.8	313
63	Effect of Overnight Restoration of Euglycemia on Glucose Effectiveness in Type 2 Diabetes Mellitus1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2314-2319.	1.8	9