
Martin Wills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3183496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric transfer hydrogenation of Cr̃O and Cr̃N bonds. Tetrahedron: Asymmetry, 1999, 10, 2045-2061.	1.8	714
2	Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chemical Society Reviews, 2010, 39, 81-88.	38.1	613
3	A Class of Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenations of Ketones. Journal of the American Chemical Society, 2005, 127, 7318-7319.	13.7	262
4	A New Class of "Tethered―Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenation Reactions. Journal of the American Chemical Society, 2004, 126, 986-987.	13.7	259
5	Enantioselective catalysis using phosphorus-donor ligands containing two or three P–N or P–O bonds. Chemical Society Reviews, 2002, 31, 259-268.	38.1	182
6	Chemistry and clinical biology of the bryostatins. Bioorganic and Medicinal Chemistry, 2000, 8, 1841-1860.	3.0	178
7	C–N Bond Formation between Alcohols and Amines Using an Iron Cyclopentadienone Catalyst. Organic Letters, 2015, 17, 1086-1089.	4.6	178
8	Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature Chemistry, 2018, 10, 347-354.	13.6	173
9	Asymmetric catalysis using iron complexes – â€~Ruthenium Lite'?. Catalysis Science and Technology, 2012, 2, 243-255.	4.1	172
10	Chiral toluene-2,α-sultam auxiliaries: Preparation and structure of enantiomerically pure (2R)- and (S)-ethyl-2,1′-sultam. Tetrahedron Letters, 1990, 31, 4117-4120.	1.4	166
11	(1R,2S)-(+)-cis-1-Amino-2-indanol:  An Effective Ligand for Asymmetric Catalysis of Transfer Hydrogenations of Ketones. Journal of Organic Chemistry, 1997, 62, 5226-5228.	3.2	166
12	A Stereochemically Well-Defined Rhodium(III) Catalyst for Asymmetric Transfer Hydrogenation of Ketones. Organic Letters, 2005, 7, 5489-5491.	4.6	162
13	The "Reverse-Tethered―Ruthenium (II) Catalyst for Asymmetric Transfer Hydrogenation: Further Applications. Journal of Organic Chemistry, 2006, 71, 7035-7044.	3.2	160
14	Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines. Organic Letters, 2009, 11, 847-850.	4.6	154
15	A One-Pot Process for the Enantioselective Synthesis of Amines via Reductive Amination under Transfer Hydrogenation Conditions. Organic Letters, 2003, 5, 4227-4230.	4.6	137
16	An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine. Chemical Communications, 2006, , 3232.	4.1	130
17	Synthetic applications of polymeric α-amino acids. Tetrahedron: Asymmetry, 1997, 8, 3163-3173.	1.8	125
18	Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes. Organometallics, 2009, 28, 4133-4140.	2.3	125

#	Article	IF	CITATIONS
19	Rhodium-Mediated Asymmetric Hydroformylation with a Novel Bis(diazaphospholidine) Ligand. Angewandte Chemie - International Edition, 2000, 39, 4106-4108.	13.8	122
20	An Investigation into the Tether Length and Substitution Pattern of Arene-Substituted Complexes for Asymmetric Transfer Hydrogenation of Ketones. Organic Letters, 2007, 9, 4659-4662.	4.6	122
21	The Development of Phosphineâ€Free "Tethered" Ruthenium(II) Catalysts for the Asymmetric Reduction of Ketones and Imines. Chemical Record, 2016, 16, 2623-2643.	5.8	108
22	Chiral toluene-2,α-sultam auxiliaries: Asymmetric diels-alder reactions of N-enoyl derivatives. Tetrahedron Letters, 1990, 31, 5015-5018.	1.4	104
23	Application of Ruthenium Complexes of Triazole-Containing Tridentate Ligands to Asymmetric Transfer Hydrogenation of Ketones. Organic Letters, 2012, 14, 5230-5233.	4.6	101
24	A Novel Phosphinamide Catalyst for the Asymmetric Reduction of Ketones by Borane. Journal of Organic Chemistry, 1998, 63, 6068-6071.	3.2	97
25	Asymmetric transfer hydrogenation of α,β-unsaturated, α-tosyloxy and α-substituted ketones. Tetrahedron, 2006, 62, 1864-1876.	1.9	97
26	"Tethered―Ru(II) Catalysts for Asymmetric Transfer Hydrogenation of Ketones. Journal of Organic Chemistry, 2005, 70, 3188-3197.	3.2	86
27	Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones. Organic and Biomolecular Chemistry, 2012, 10, 134-145.	2.8	82
28	Rhodium versus ruthenium: contrasting behaviour in the asymmetric transfer hydrogenation of α-substituted acetophenones. Tetrahedron: Asymmetry, 2001, 12, 1801-1806.	1.8	81
29	(Cyclopentadienone)iron Shvo Complexes: Synthesis and Applications to Hydrogen Transfer Reactions. Organometallics, 2011, 30, 1859-1868.	2.3	81
30	The importance of the N–H bond in Ru/TsDPEN complexes for asymmetric transfer hydrogenation of ketones and imines. Organic and Biomolecular Chemistry, 2011, 9, 3290.	2.8	80
31	Ether-tethered Ru(ii)/TsDPEN complexes; synthesis and applications to asymmetric transfer hydrogenation. Catalysis Science and Technology, 2012, 2, 406-414.	4.1	79
32	An Unexpected Directing Effect in the Asymmetric Transfer Hydrogenation of α,α-Disubstituted Ketones. Organic Letters, 2011, 13, 4304-4307.	4.6	77
33	Asymmetric Transfer Hydrogenation of Cĩ£¾O and Cĩ£¾N Bonds by Tethered Rh ^{III} Catalysts. Chemistry - an Asian Journal, 2008, 3, 1374-1383.	3.3	75
34	Use of (Cyclopentadienone)iron Tricarbonyl Complexes for C–N Bond Formation Reactions between Amines and Alcohols. Journal of Organic Chemistry, 2017, 82, 10489-10503.	3.2	74
35	A Continuousâ€Flow Method for the Generation of Hydrogen from Formic Acid. ChemSusChem, 2010, 3, 431-434.	6.8	73
36	Application of Tethered Ruthenium Catalysts to Asymmetric Hydrogenation of Ketones, and the Selective Hydrogenation of Aldehydes. Advanced Synthesis and Catalysis, 2012, 354, 2545-2555.	4.3	73

#	Article	IF	CITATIONS
37	Asymmetric transfer hydrogenation of ketones using amino alcohol and monotosylated diamine derivatives of indane. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 416-427.	1.3	70
38	Asymmetric transfer hydrogenation of quinolines using tethered Ru(II) catalysts. Tetrahedron: Asymmetry, 2010, 21, 1549-1556.	1.8	69
39	ESPHOS and SEMI-ESPHOS:Â A New Family of Mono- and Bidentate Diazaphospholidine Ligands for Asymmetric Catalysis. Journal of Organic Chemistry, 1999, 64, 9735-9738.	3.2	68
40	Asymmetric Hydrogenation of Ketones Using a Ruthenium(II) Catalyst Containing BINOL-Derived Monodonor Phosphorus-Donor Ligands. Organic Letters, 2004, 6, 4105-4107.	4.6	66
41	New catalysts containing an N-Pî—»O structural unit for the asymmetric reduction of ketones Tetrahedron Letters, 1993, 34, 7105-7106.	1.4	60
42	Direct Formation of Tethered Ru(II) Catalysts Using Arene Exchange. Organic Letters, 2013, 15, 5110-5113.	4.6	58
43	Kinetic and structural studies on â€~tethered' Ru(ii) arene ketone reduction catalysts. Dalton Transactions, 2010, 39, 1395-1402.	3.3	56
44	Asymmetric Catalysis Using Air: Clean Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2008, 47, 4264-4267.	13.8	55
45	Asymmetric Transfer Hydrogenation of Functionalized Acetylenic Ketones. Journal of Organic Chemistry, 2013, 78, 8594-8605.	3.2	55
46	Total Synthesis of Halicholactone and Neohalicholactone1. Journal of Organic Chemistry, 1997, 62, 6638-6657.	3.2	54
47	Dynamic kinetic resolution–asymmetric transfer hydrogenation of 1-aryl-substituted cyclic ketones. Tetrahedron: Asymmetry, 2002, 13, 2485-2490.	1.8	51
48	Asymmetric Reduction of Electron-Rich Ketones with Tethered Ru(II)/TsDPEN Catalysts Using Formic Acid/Triethylamine or Aqueous Sodium Formate. Journal of Organic Chemistry, 2015, 80, 6784-6793.	3.2	51
49	New chiral phosphinamide catalysts for highly enantioselective reduction of ketones. Tetrahedron Letters, 1996, 37, 2853-2856.	1.4	50
50	Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics, 2018, 37, 1555-1566.	2.3	49
51	Asymmetric Transfer Hydrogenation of α-Amino and α-Alkoxy Substituted Ketones. Synlett, 1999, 1999, 1615-1617.	1.8	48
52	Applications of Nâ€2-alkylated derivatives of TsDPEN in the asymmetric transfer hydrogenation of CO and CN bonds. Tetrahedron: Asymmetry, 2010, 21, 2258-2264.	1.8	48
53	Chiral phosphinamides: new catalysts for the asymmetric reduction of ketones by borane. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1027-1038.	0.9	47
54	Applications of Non-Organometallic Phosphorus Reagents in Enantioselective Catalysis. Synlett, 1999, 1999, 377-388.	1.8	47

#	Article	IF	CITATIONS
55	Asymmetric Reduction of Diynones and the Total Synthesis of (S)-Panaxjapyne A. Organic Letters, 2014, 16, 374-377.	4.6	47
56	Novel catalysts for asymmetric reduction of carbonyl groups. Journal of Molecular Catalysis A, 1999, 146, 139-148.	4.8	46
57	Ruthenium(II) Complexes of Monodonor Ligands:Â Efficient Reagents for Asymmetric Ketone Hydrogenation. Journal of Organic Chemistry, 2005, 70, 8079-8087.	3.2	46
58	Further â€~tethered' Ru(II) catalysts for asymmetric transfer hydrogenation (ATH) of ketones; the use of a benzylic linker and a cyclohexyldiamine ligand. Journal of Organometallic Chemistry, 2008, 693, 3527-3532.	1.8	46
59	Iron cyclopentadienone complexes derived from C ₂ -symmetric bis-propargylic alcohols; preparation and applications to catalysis. Dalton Transactions, 2016, 45, 3992-4005.	3.3	46
60	A new class of chiral phosphorus catalyst for asymmetric palladium catalysed allylic substitution reactions. Tetrahedron Letters, 1994, 35, 2791-2794.	1.4	45
61	Recent Developments in the Area of Asymmetric Transfer Hydrogenation. Molecules, 2000, 5, 4-18.	3.8	45
62	Modification and Inhibition of Vancomycin Group Antibiotics by Formaldehyde and Acetaldehyde. Chemistry - A European Journal, 2001, 7, 910-916.	3.3	45
63	Stereoelectronic requirements for a new class of asymmetric ketone reduction catalysts containing an Nî—,Pî—»O structural unit Tetrahedron: Asymmetry, 1994, 5, 801-804.	1.8	44
64	Synthesis and applications to asymmetric catalysis of a series of mono- and bis(diazaphospholidine) ligands. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2840-2849.	1.3	44
65	Asymmetric transfer hydrogenation using amino acid derivatives; further studies and a mechanistic proposal. Tetrahedron, 2005, 61, 7994-8004.	1.9	44
66	Synthesis and Catalytic Applications of an Extended Range of Tethered Ruthenium(II)/η ⁶ -Arene/Diamine Complexes. Organometallics, 2014, 33, 5517-5524.	2.3	44
67	A diversity of recently reported methodology for asymmetric imine reduction. Organic Chemistry Frontiers, 2020, 7, 3312-3342.	4.5	44
68	Asymmetric synthesis of amines using a chiral, non-racemic, benzylidene sulfinamide derived from a recoverable precursor. Journal of the Chemical Society Perkin Transactions 1, 1996, , 691.	0.9	42
69	Palladium-Catalyzed Tandem Reactions To Form 1-Vinyl-1H-isochromene Derivatives1. Journal of Organic Chemistry, 2001, 66, 3284-3290.	3.2	42
70	The detection of intermediates in the ruthenium(ii) catalysed asymmetric hydrogenation of ketones using electrospray ionisation mass spectrometry. Chemical Communications, 2000, , 99-100.	4.1	41
71	Enantioselective synthesis of \hat{l}^2 -hydroxy amines and aziridines using asymmetric transfer hydrogenation of \hat{l}_2 -amino ketones. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1916-1928.	1.3	41
72	lr(III) complexes of diamine ligands for asymmetric ketone hydrogenation. Tetrahedron, 2009, 65, 5782-5786.	1.9	40

#	Article	IF	CITATIONS
73	Mirrorâ€Image Organometallic Osmium Arene Iminopyridine Halido Complexes Exhibit Similar Potent Anticancer Activity. Chemistry - A European Journal, 2013, 19, 15199-15209.	3.3	40
74	Easy To Synthesize, Robust Organoâ€osmium Asymmetric Transfer Hydrogenation Catalysts. Chemistry - A European Journal, 2015, 21, 8043-8046.	3.3	39
75	Enantioselective synthesis of β-hydroxy amines and aziridines using asymmetric transfer hydrogenation of α-amido ketones. Tetrahedron: Asymmetry, 2000, 11, 3257-3261.	1.8	38
76	Bis(diazaphospholidine) ligands for asymmetric hydroformylation: use of ESPHOS and derivatives based on ferrocene and diarylether backbones. Tetrahedron: Asymmetry, 2004, 15, 1787-1792.	1.8	38
77	The total asymmetric synthesis of Halicholactone and Neohalicholactone. Tetrahedron Letters, 1995, 36, 3763-3766.	1.4	37
78	Synthesis and applications of a new class of phosphorus donor ligands for asymmetric catalysis. Chemical Communications, 1997, , 1053-1054.	4.1	36
79	Phosphinamides catalysts containing a stereogenic phosphorus atom for the asymmetric reduction of ketones by borane. Tetrahedron: Asymmetry, 1997, 8, 73-78.	1.8	36
80	One-pot formation of nitrogen-containing heterocyclic ring systems using a deprotection–cyclisation–asymmetric reduction sequence. Chemical Communications, 2005, , 4735.	4.1	36
81	Asymmetric hydrogenation of ketones using Ir(III) complexes of N-alkyl-N'-tosyl-1,2-ethanediamine ligands. Tetrahedron Letters, 2009, 50, 688-692.	1.4	36
82	The importance of 1,2-anti-disubstitution in monotosylated diamine ligands for ruthenium(II)-catalysed asymmetric transfer hydrogenation. Tetrahedron: Asymmetry, 2004, 15, 2079-2084.	1.8	34
83	The use of a [4 + 2] cycloaddition reaction for the preparation of a series of â€~tethered' Ru(ii)–diamine and aminoalcohol complexes. Organic and Biomolecular Chemistry, 2007, 5, 1093-1103.	2.8	34
84	Asymmetric organocatalysis of the addition of acetone to 2-nitrostyrene using N-diphenylphosphinyl-1,2-diphenylethane-1,2-diamine (PODPEN). Tetrahedron Letters, 2010, 51, 209-212.	1.4	34
85	Unravelling the Photoprotection Properties of Mycosporine Amino Acid Motifs. Journal of Physical Chemistry Letters, 2018, 9, 3043-3048.	4.6	34
86	Design, synthesis and applications of a ketone reduction catalyst containing a phosphinamide combined with a dioxaborolidine unit. Tetrahedron: Asymmetry, 1996, 7, 3071-3074.	1.8	32
87	Imino Transfer Hydrogenation Reductions. Topics in Current Chemistry, 2016, 374, 14.	5.8	32
88	The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Transactions, 2016, 45, 8367-8378.	3.3	31
89	Asymmetric Reduction of Cyclic Enones to Allylic Alcohols. Synlett, 2002, 2002, 0263-0266.	1.8	30
90	Combining Electronic and Steric Effects To Generate Hindered Propargylic Alcohols in High Enantiomeric Excess. Organic Letters, 2018, 20, 975-978.	4.6	30

#	Article	IF	CITATIONS
91	Synthesis and application to asymmetric allylic amination of substituted monodonor diazaphospholidine ligands. Tetrahedron, 2003, 59, 6473-6480.	1.9	29
92	A Soluble-Polymer System for the Asymmetric Transfer Hydrogenation of Ketones. Journal of Organic Chemistry, 2004, 69, 5405-5412.	3.2	29
93	Synthesis of a series of novel N,N-dialkyl-TsDPEN ligands and their application to enantioselective addition of dialkylzinc to benzaldehyde. Tetrahedron: Asymmetry, 2008, 19, 1250-1255.	1.8	29
94	New ligands for asymmetric palladium catalysed allylic substitution reactions. X-ray crystal structures of two enantiomerically pure dihydrobenzazaphosphole-borane complexes. Tetrahedron, 1995, 51, 10581-10592.	1.9	28
95	An efficient method for the synthesis of N,N′-dimethyl-1,2-diamines. Tetrahedron Letters, 2002, 43, 155-158.	1.4	26
96	Asymmetric reduction of 2,2-dimethyl-6-(2-oxoalkyl/oxoaryl)-1,3-dioxin-4-ones and application to the synthesis of (+)-yashabushitriol. Tetrahedron Letters, 2013, 54, 6834-6837.	1.4	26
97	Structure and Mechanism of Acetolactate Decarboxylase. ACS Chemical Biology, 2013, 8, 2339-2344.	3.4	26
98	Asymmetric Transfer Hydrogenation of 1,3-Alkoxy/Aryloxy Propanones Using Tethered Arene/Ru(II)/TsDPEN Complexes. Organic Letters, 2017, 19, 2789-2792.	4.6	25
99	Synthesis and applications to catalysis of novel cyclopentadienone iron tricarbonyl complexes. Dalton Transactions, 2018, 47, 1451-1470.	3.3	25
100	Sulfone Group as a Versatile and Removable Directing Group for Asymmetric Transfer Hydrogenation of Ketones. Angewandte Chemie - International Edition, 2020, 59, 14265-14269.	13.8	25
101	Synthesis and applications of a new class of C2 symmetric phosphorus donor ligand for asymmetric catalysis. Tetrahedron: Asymmetry, 1996, 7, 2809-2812.	1.8	24
102	A new class of Rh(III) catalyst containing an aminoalcohol tethered to a tetramethylcyclopentadienyl group for asymmetric transfer hydrogenation of ketones. Tetrahedron Letters, 2004, 45, 843-846.	1.4	24
103	Enantioselectivity in the Noyori–Ikariya Asymmetric Transfer Hydrogenation of Ketones. Organometallics, 2021, 40, 1402-1410.	2.3	24
104	Gold-catalysed cyclic ether formation from diols. Tetrahedron, 2010, 66, 9828-9834.	1.9	22
105	Synthesis of Enantiomerically Pure and Racemic Benzyl-Tethered Ru(II)/TsDPEN Complexes by Direct Arene Substitution: Further Complexes and Applications. Organometallics, 2018, 37, 48-64.	2.3	22
106	Chiral recognition in the reaction of the enolate derived from [(η5-C5H5)Fe(CO)(PPh3)COCH2OCH2Ph] with cis- and trans-2,3-epoxybutane: The stereoselective synthesis of cis and trans-βγ-disubstituted-Ĩ³-lactones. Tetrahedron Letters, 1989, 30, 587-590.	1.4	21
107	Synthesis of 2,5-dihydrofurans via alkylidene carbene insertion reactions. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 965-981.	1.3	21
108	Chiral recognition in the reaction of the enolate derived from [(η5-C5H5)Fe(CO)(PPh3)COCH2OCH2Ph] with 1-phenylethyl bromide. Journal of the Chemical Society Chemical Communications, 1990, , 797-799.	2.0	20

#	Article	IF	CITATIONS
109	A new class of recoverable chiral sulphoxide: Application to the asymmetric synthesis of β-hydroxy esters Tetrahedron Letters, 1992, 33, 5427-5430.	1.4	19
110	Asymmetric synthesis of amines using a chiral, non-racemic, cyclic sulphinamide Tetrahedron: Asymmetry, 1993, 4, 2159-2162.	1.8	19
111	Practical Access to Planar Chiral 1,2â€(αâ€Ketotetramethylene)―ferrocene by Nonâ€Enzymatic Kinetic Resolution and Conclusive Confirmation of its Absolute Configuration. Advanced Synthesis and Catalysis, 2015, 357, 3453-3457.	4.3	19
112	Asymmetric Transfer Hydrogenation of Unhindered and Non-Electron-Rich 1-Aryl Dihydroisoquinolines with High Enantioselectivity. Organic Letters, 2020, 22, 6283-6287.	4.6	19
113	Application of the iron acyl complex R-(-)-[(η5-C5H5)Fe(CO)(PPh3)- COCH2O({{1R,2S},5Rmenthyl)] as a homochiral formyl anion equivalent. Tetrahedron Letters, 1989, 30, 2971-2974.	1.4	18
114	Catalytic asymmetric processes. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3101.	0.9	18
115	Asymmetric catalysts. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1109.	0.9	18
116	Ru(II) complexes of cyclohexane diamine and monodentate phosphorus ligands for asymmetric ketone hydrogenation. Tetrahedron: Asymmetry, 2006, 17, 2925-2929.	1.8	18
117	Application of Prolineâ€Functionalised 1,2â€Diphenylethaneâ€1,2â€diamine (DPEN) in Asymmetric Transfer Hydrogenation of Ketones. European Journal of Organic Chemistry, 2011, 2011, 6893-6901.	2.4	18
118	Asymmetric Transfer Hydrogenation: Dynamic Kinetic Resolution of α-Amino Ketones. Journal of Organic Chemistry, 2020, 85, 11309-11330.	3.2	18
119	Synthesis and X-ray crystallographic structure of the right-hand hemisphere of halicholactone and neohalicholactone. Journal of the Chemical Society Chemical Communications, 1995, , 139.	2.0	17
120	Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron: Asymmetry, 2013, 24, 844-852.	1.8	17
121	An approach to the stereoselective synthesis of α-hydroxycarboxylic acids. Journal of Organometallic Chemistry, 1987, 328, C29-C33.	1.8	16
122	Dependence of ring closure stereoselectivity on the nature of the leaving group: application to the synthesis of a new class of chiral sulfoxide for the control of asymmetric aldol reactions. Journal of the Chemical Society Perkin Transactions 1, 1991, , 3383.	0.9	16
123	"Ether-Linked―Organometallic Catalysts for Ketone Reduction Reactions. Organometallics, 2007, 26, 5346-5351.	2.3	16
124	Asymmetric Transfer Hydrogenation of <i>o</i> -Hydroxyphenyl Ketones: Utilizing Directing Effects That Optimize the Asymmetric Synthesis of Challenging Alcohols. Organic Letters, 2020, 22, 3717-3721.	4.6	16
125	Recoverable chiral sulfoxides for asymmetric synthesis: preparation, regeneration and application to the asymmetric aldol reaction. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1581.	0.9	15
126	Main group organometallics in synthesis. Contemporary Organic Synthesis, 1996, 3, 201.	1.5	15

#	Article	IF	CITATIONS
127	Synthesis of 2,5-dihydrofurans via alkylidene carbene insertion reactions. Tetrahedron Letters, 1998, 39, 5273-5276.	1.4	15
128	Design, synthesis and preliminary studies on a novel class of chiral receptor for the recognition of amino acid derivatives 1. Journal of the Chemical Society Perkin Transactions 1, 1998, , 457-466.	0.9	15
129	Direct formation of 1-vinyl-1H-isochromene derivatives via a palladium-catalysed coupling reaction. Chemical Communications, 2000, , 1675-1676.	4.1	15
130	Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation. Organic Letters, 2021, 23, 3179-3183.	4.6	15
131	Synthesis of a new class of asymmetric ketone reduction catalyst via a diastereoselective cyclisation reaction: X-ray crystal structure of S(p)R-(–)-N-(tert-butyldiphenylsilyl)dihydrobenzazaphosphole oxide. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2243-2246.	0.9	14
132	Studies of intramolecular alkylidene carbene reactions; an approach to heterocyclic nucleoside bases. Tetrahedron, 2003, 59, 4739-4748.	1.9	14
133	Synthesis and use of a stable aminal derived from TsDPEN in asymmetric organocatalysis. Tetrahedron Letters, 2010, 51, 4214-4217.	1.4	14
134	Ruthenium-Catalyzed Asymmetric Reduction of Isoxazolium Salts: Access to Optically Active Δ ⁴ -lsoxazolines. Journal of Organic Chemistry, 2018, 83, 2980-2985.	3.2	13
135	Probing the Effects of Heterocyclic Functionality in [(Benzene)Ru(TsDPENR)Cl] Catalysts for Asymmetric Transfer Hydrogenation. Organic Letters, 2019, 21, 7223-7227.	4.6	13
136	Exploring the Blueprint of Photoprotection in Mycosporine-like Amino Acids. Journal of Physical Chemistry Letters, 2021, 12, 3641-3646.	4.6	13
137	The asymmetric synthesis of allylic alcohols using a recoverable chiral sulphoxide. Tetrahedron Letters, 1994, 35, 1785-1788.	1.4	12
138	Rapid assembly and synthetic applications of a supported poly-α-amino acid containing phosphine groups. Tetrahedron Letters, 2000, 41, 8615-8619.	1.4	12
139	Modification of ligand properties of phosphine ligands for C–C and C–N bond-forming reactions. Tetrahedron Letters, 2007, 48, 949-953.	1.4	12
140	Use of tridentate TsDPEN/pyridine ligands in ruthenium-catalysed asymmetric reduction of ketones. Tetrahedron Letters, 2013, 54, 4250-4253.	1.4	12
141	Strained alkynes derived from 2,2′-dihydroxy-1,1′-biaryls; synthesis and copper-free cycloaddition with azides. Organic and Biomolecular Chemistry, 2017, 15, 4517-4521.	2.8	12
142	Asymmetric transfer hydrogenation of acetophenone derivatives usingÂ2-benzyl-tethered ruthenium (II)/TsDPEN complexes bearing η6-(p-OR) (RÂ= H, iPr, Bn, Ph) ligands. Journal of Organometallic Chemistry, 2018, 875, 72-79.	1.8	12
143	The use of phosphinamide N-protecting groups in the diastereoselective reduction of ketones. Tetrahedron, 1998, 54, 8827-8840.	1.9	11
144	Readily accessible sp3-rich cyclic hydrazine frameworks exploiting nitrogen fluxionality. Chemical Science, 2020, 11, 1636-1642.	7.4	11

#	Article	IF	CITATIONS
145	The effect of zinc(II)bromide on the reduction of a chiral, non-racemic, benzylidene sulphinamide derived from a recoverable, cyclic sulphinamide. Tetrahedron Letters, 1994, 35, 5303-5306.	1.4	10
146	Recoverable chiral sulfoxides for asymmetric synthesis: application to stereoselective carbonyl reduction and the asymmetric synthesis of allylic alcohols. Journal of the Chemical Society Perkin Transactions 1, 1996, , 95.	0.9	10
147	Synthesis of dihydrobenzazaphosphole ligands via an intramolecular cyclisation reaction. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2588-2594.	1.3	10
148	Inhibition of prolyl oligopeptidase with a synthetic unnatural dipeptide. Bioorganic and Medicinal Chemistry, 2010, 18, 4775-4782.	3.0	10
149	Applications of <i>N</i> ′-monofunctionalised TsDPEN derivatives in asymmetric catalysis. Organic and Biomolecular Chemistry, 2019, 17, 1301-1321.	2.8	10
150	CHEMISTRY: Better Asymmetric Reactions. Science, 2006, 311, 619-620.	12.6	9
151	Synthesis and asymmetric hydrogenation of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione. Chemical Communications, 2012, 48, 11978.	4.1	9
152	Tethered Ru(II) catalysts containing a Ru–I bond. Journal of Organometallic Chemistry, 2015, 776, 157-162.	1.8	9
153	N-Functionalised TsDPEN catalysts for asymmetric transfer hydrogenation; synthesis and applications. Tetrahedron Letters, 2015, 56, 6397-6401.	1.4	9
154	Synthesis and hydrolysis studies of a peptide containing the reactive triad of serine proteases with an associated linker to a dye on a solid phase supportElectronic supplementary information (ESI) available: Description of preliminary qualitative hydrolysis studies using the materials prepared and described in the main paper. See http://www.rsc.org/suppdata/ob/b3/b302239k/. Organic and	2.8	8
155	Biomolecular Chemistry, 2003, 1, 1486-1497. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones using Noyori″kariya Catalysts. ChemCatChem, 2021, 13, 4384-4391.	3.7	8
156	The use of phosphinamide N-protecting groups in the diastereoselective reduction of ketones. Tetrahedron Letters, 1997, 38, 2315-2316.	1.4	7
157	An alternative route to tethered Ru(II) transfer hydrogenation catalysts. Tetrahedron Letters, 2018, 59, 930-933.	1.4	7
158	Exploitation of differential electronic densities for the stereoselective reduction of ketones bearing a masked amino surrogate. Journal of Catalysis, 2018, 361, 40-44.	6.2	7
159	Synthesis and cycloaddition reactions of strained alkynes derived from 2,2′-dihydroxy-1,1′-biaryls. Organic and Biomolecular Chemistry, 2018, 16, 8965-8975.	2.8	7
160	Chiral Recognition Reactions of Homochiral Sulphinate Esters: A Study of the Reaction Between the Enolate, and the Anion of the Corresponding Dimethylhydrazone, Derived from 4-tert-Butylcyclohexanone and (1R,2S,5R)-(-)-Menthyl-(S)-p-Tolylsulphinate. Synlett, 1991, 1991, 836-840.	1.8	6
161	Synthesis and electrospray mass spectrometric studies on a chiral, non-racemic, phosphoramide receptor molecule. Tetrahedron: Asymmetry, 1999, 10, 3267-3271.	1.8	6
162	Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants. Quimica Nova, 2002, 25, 921.	0.3	6

#	Article	IF	CITATIONS
163	(S)-(â~')-Fluorenylethylchloroformate (FLEC); preparation using asymmetric transfer hydrogenation and application to the analysis and resolution of amines. Tetrahedron, 2019, 75, 130591.	1.9	6
164	X-Ray Structure Analyses of Alkyl-SubstitutedN-Acryloyl- andN-Crotonoyltoluenesultams. Helvetica Chimica Acta, 1997, 80, 1607-1612.	1.6	5
165	The Synthesis of a Synthetic Receptor via Directed Lithiations of Dibenzofuran and Bibenzothiophene. Synlett, 1995, 1995, 770-772.	1.8	4
166	An optimised synthetic approach to a chiral derivatising agent and the utilisation of a dimerisation reaction in the synthesis of a novel C2-symmetric diphosphine ligand. Tetrahedron: Asymmetry, 2007, 18, 664-670.	1.8	4
167	Dissociation and hierarchical assembly of chiral esters on metallic surfaces. Chemical Communications, 2013, 49, 6477.	4.1	4
168	Asymmetric transfer hydrogenation of unsaturated ketones; factors influencing 1,4- vs 1,2- regio- and enantioselectivity, and alkene vs alkyne directing effects. Tetrahedron, 2021, 77, 131771.	1.9	4
169	Hydrogenation of Compounds Containing Cĩ£¾C, Cĩ£¾O and Cĩ£¾N Bonds. , 0, , 781-842.		4
170	Asymmetric transfer hydrogenation of heterocycle-containing acetophenone derivatives using N-functionalised [(benzene)Ru(II)(TsDPEN)] complexes. Tetrahedron, 2022, 103, 132562.	1.9	4
171	Influence of substitution pattern on intramolecular alkylidene carbene insertion reactions. Tetrahedron Letters, 2001, 42, 8689-8692.	1.4	3
172	Synthesis and reduction reactions of pyridones and 5-acyl-2-methoxypyridines. Tetrahedron, 2014, 70, 7207-7220.	1.9	3
173	Asymmetric ruthenium tricarbonyl cyclopentadienone complexes; synthesis and application to asymmetric hydrogenation of ketones. Inorganica Chimica Acta, 2019, 496, 119043.	2.4	3
174	Synthesis and Reactivity of a Bis-Strained Alkyne Derived from 1,1′-Biphenyl-2,2′,6,6′-tetrol. ACS Omega, 2019, 4, 2160-2167.	3.5	3
175	A strained alkyne-containing bipyridine reagent; synthesis, reactivity and fluorescence properties. RSC Advances, 2019, 9, 36154-36161.	3.6	3
176	Asymmetric Transfer Hydrogenation of α-Keto Amides; Highly Enantioselective Formation of Malic Acid Diamides and α-Hydroxyamides. Organic Letters, 2021, 23, 7803-7807.	4.6	3
177	New methodology for the asymmetric reduction of ketones. Current Opinion in Drug Discovery & Development, 2002, 5, 881-91.	1.9	3
178	Stereospecificity of the rearrangement of the α-alkoxy iron acyl [(η5-C5H5)Fe(CO)(PPh3)COCH2OCH2Ph] to the α-metalla-ester [(η5-C5H5)Fe(CO)(PPh3)CH2CO2CH2Ph]. Journal of the Chemical Society Chemical Communications, 1987, , 1647-1648.	2.0	2
179	Synthesis and preliminary studies on a novel class of soluble amino alcohol reagents based on methacrylate copolymers. Tetrahedron, 2003, 59, 5823-5830.	1.9	2
180	Sulfone Group as a Versatile and Removable Directing Group for Asymmetric Transfer Hydrogenation of Ketones. Angewandte Chemie, 2020, 132, 14371-14375.	2.0	2

#	Article	IF	CITATIONS
181	Unexpected formation of a borated P-Azulene via the reaction of a borated diazaphospholidine with phenyllithium. Journal of Chemical Research, 2003, 2003, 728-729.	1.3	1
182	Asymmetric Opening of the Epoxide Ring in Cyclohexene Oxide by Thiophenol Using Homochiral Phosphinamide Catalysts. Journal of Chemical Research, 2007, 2007, 1-4.	1.3	1
183	Asymmetric Reduction of Ketones. , 0, , 87-159.		1
184	Asymmetric transfer hydrogenation of boronic acid pinacol ester (Bpin)-containing acetophenones. Organic and Biomolecular Chemistry, 2022, , .	2.8	1
185	New Methodology for the Asymmetric Reduction of Ketones. ChemInform, 2003, 34, no.	0.0	0
186	Studies of Intramolecular Alkylidene Carbene Reactions: An Approach to Heterocyclic Nucleoside Bases ChemInform, 2003, 34, no.	0.0	0
187	A One-Pot Process for the Enantioselective Synthesis of Amines via Reductive Amination under Transfer Hydrogenation Conditions ChemInform, 2004, 35, no.	0.0	0
188	A New Class of Rh(III) Catalyst Containing an Aminoalcohol Tethered to a Tetramethylcyclopentadienyl Group for Asymmetric Transfer Hydrogenation of Ketones ChemInform, 2004, 35, no.	0.0	0
189	Unexpected Formation of a Borated P-Azulene (IV) via the Reaction of a Borated Diazaphospholine (II) with Phenyllithium ChemInform, 2004, 35, no.	0.0	0
190	A New Class of "Tethered―Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenation Reactions ChemInform, 2004, 35, no.	0.0	0
191	Bis(diazaphospholidine) Ligands for Asymmetric Hydroformylation: Use of ESPHOS and Derivatives Based on Ferrocene and Diarylether Backbones ChemInform, 2004, 35, no.	0.0	0
192	The Importance of 1,2-anti-Disubstitution in Monotosylated Diamine Ligands for Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation ChemInform, 2004, 35, no.	0.0	0
193	A Soluble-Polymer System for the Asymmetric Transfer Hydrogenation of Ketones ChemInform, 2004, 35, no.	0.0	0
194	Asymmetric Hydrogenation of Ketones Using a Ruthenium(II) Catalyst Containing BINOL-Derived Monodonor Phosphorus-Donor Ligands ChemInform, 2005, 36, no.	0.0	0
195	Stereoselective Hydroformylation, Carbonylation and Carboxylation Reactions. , 2005, , 225-250.		0
196	Ruthenium(II) Complexes of Monodonor Ligands: Efficient Reagents for Asymmetric Ketone Hydrogenation ChemInform, 2006, 37, no.	0.0	0
197	One-Pot Formation of Nitrogen-Containing Heterocyclic Ring Systems Using a Deprotection—Cyclization—Asymmetric Reduction Sequence ChemInform, 2006, 37, no.	0.0	0
198	Structural insights into the mechanism of acetolactate decarboxylase. FASEB Journal, 2012, 26, 756.8.	0.5	0