
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/318326/publications.pdf Version: 2024-02-01

FENC SHI

#	Article	IF	CITATIONS
1	Nano-Gold Catalysis in Fine Chemical Synthesis. Chemical Reviews, 2012, 112, 2467-2505.	23.0	619
2	Alternatives to Phosgene and Carbon Monoxide: Synthesis of Symmetric Urea Derivatives with Carbon Dioxide in Ionic Liquids. Angewandte Chemie - International Edition, 2003, 42, 3257-3260.	7.2	241
3	Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe ₃ O ₄ . Journal of the American Chemical Society, 2009, 131, 1775-1779.	6.6	232
4	From CO Oxidation to CO2Activation:Â An Unexpected Catalytic Activity of Polymer-Supported Nanogold. Journal of the American Chemical Society, 2005, 127, 4182-4183.	6.6	227
5	Silica-Gel-Confined Ionic Liquids: A New Attempt for the Development of Supported Nanoliquid Catalysis. Chemistry - A European Journal, 2005, 11, 5279-5288.	1.7	209
6	Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chemical Science, 2014, 5, 649-655.	3.7	169
7	Development of a General Nonâ€Noble Metal Catalyst for the Benign Amination of Alcohols with Amines and Ammonia. Chemistry - A European Journal, 2013, 19, 3665-3675.	1.7	168
8	Copperâ€Catalyzed Alkylation of Sulfonamides with Alcohols. Angewandte Chemie - International Edition, 2009, 48, 5912-5915.	7.2	167
9	Organic Ligandâ€Free Alkylation of Amines, Carboxamides, Sulfonamides, and Ketones by Using Alcohols Catalyzed by Heterogeneous Ag/Mo Oxides. Chemistry - A European Journal, 2011, 17, 1021-1028.	1.7	166
10	Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 2017, 3, 580-585.	5.3	130
11	Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Letters, 2011, 52, 1334-1338.	0.7	121
12	Carbon-catalysed reductive hydrogen atom transfer reactions. Nature Communications, 2015, 6, 6478.	5.8	108
13	N-Methylation of amine and nitro compounds with CO ₂ /H ₂ catalyzed by Pd/CuZrO _x under mild reaction conditions. Chemical Communications, 2014, 50, 13521-13524.	2.2	107
14	Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst. Chemical Communications, 2014, 50, 189-191.	2.2	100
15	Catalytic Amination of Biomassâ€Based Alcohols. ChemSusChem, 2014, 7, 720-722.	3.6	95
16	Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetric Ureas by Oxidative Carbonylation of Aniline and Its Derivativesâ~†. Journal of Catalysis, 2002, 211, 548-551.	3.1	88
17	Copperâ€Catalyzed <i>N</i> â€Alkylation of Sulfonamides with Benzylic Alcohols: Catalysis and Mechanistic Studies. Advanced Synthesis and Catalysis, 2009, 351, 2949-2958.	2.1	85
18	Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 239-244.	2.0	82

#	Article	IF	CITATIONS
19	First gold(i) complex-catalyzed oxidative carbonylation of amines for the syntheses of carbamates. Chemical Communications, 2001, , 443-444.	2.2	81
20	Highly selective and green aqueous–ionic liquid biphasic hydroxylation of benzene to phenol with hydrogen peroxideThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany 13–16th October 2002 Green Chemistry, 2003, 5, 224-226.	4.6	77
21	Rutheniumâ€Catalyzed Nitro and Nitrile Compounds Coupling with Alcohols: Alternative Route for Nâ€Substituted Amine Synthesis. Chemistry - A European Journal, 2011, 17, 2587-2591.	1.7	73
22	Light-promoted N,N-dimethylation of amine and nitro compound with methanol catalyzed by Pd/TiO ₂ at room temperature. RSC Advances, 2015, 5, 14514-14521.	1.7	62
23	Au/Ag–Mo nano-rods catalyzed reductive coupling of nitrobenzenes and alcohols using glycerol as the hydrogen source. Chemical Communications, 2012, 48, 9391.	2.2	61
24	Hydrogen Generation from Formic Acid Decomposition with a Ruthenium Catalyst Promoted by Functionalized Ionic Liquids. ChemSusChem, 2010, 3, 71-74.	3.6	59
25	Supported nano-gold-catalyzed N-formylation of amines with paraformaldehyde in water under ambient conditions. Green Chemistry, 2016, 18, 808-816.	4.6	58
26	The Influence of the Acidity of Ionic Liquids on Catalysis. ChemSusChem, 2010, 3, 1043-1047.	3.6	56
27	Development of Ionic Liquids as Green Reaction Media and Catalysts. Catalysis Surveys From Asia, 2004, 8, 179-186.	1.0	53
28	A novel ZrO2–SO42â^' supported palladium catalyst for syntheses of disubstituted ureas from amines by oxidative carbonylation. Tetrahedron Letters, 2001, 42, 2161-2163.	0.7	52
29	Reductive Amination of Furanic Aldehydes in Aqueous Solution over Versatile Ni _{<i>y</i>} AlO _{<i>x</i>} Catalysts. ACS Omega, 2019, 4, 2510-2516.	1.6	52
30	Title is missing!. Angewandte Chemie, 2003, 115, 3379-3382.	1.6	50
31	A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chemistry, 2017, 19, 305-310.	4.6	49
32	Hydroxyl Group-Regulated Active Nano-Pd/C Catalyst Generation via in Situ Reduction of Pd(NH ₃) _{<i>x</i>} Cl _{<i>y</i>/i>} /C for <i>N</i> -Formylation of Amines with CO ₂ /H ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 5758-5765.	3.2	45
33	Quaternary Ammonium Ionic Liquids as Bi-functional Catalysts for One-step Synthesis of Dimethyl Carbonate from Ethylene Oxide, Carbon Dioxide and Methanol. Catalysis Letters, 2011, 141, 339-346.	1.4	42
34	N-substituted carbamates syntheses with alkyl carbamates as carbonyl source over Ni-promoted Fe3O4 catalyst. Journal of Catalysis, 2011, 279, 328-336.	3.1	41
35	Silica Gel Confined Ionic Liquid+Metal Complexes for Oxygen-Free Carbonylation of Amines and Nitrobenzene to Ureas. Advanced Synthesis and Catalysis, 2005, 347, 225-230.	2.1	39
36	Room temperature N-alkylation of amines with alcohols under UV irradiation catalyzed by Cu–Mo/TiO ₂ . Catalysis Science and Technology, 2015, 5, 3226-3234.	2.1	39

#	Article	IF	CITATIONS
37	Oxidative dehydrogenation of light alkanes with carbon dioxide. Green Chemistry, 2021, 23, 689-707.	4.6	39
38	Sustainable Coâ€Synthesis of Glycolic Acid, Formamides and Formates from 1,3â€Dihydroxyacetone by a Cu/Al ₂ O ₃ Catalyst with a Single Active Sites. Angewandte Chemie - International Edition, 2019, 58, 5251-5255.	7.2	38
39	N-Monomethylation of amines using paraformaldehyde and H ₂ . Chemical Communications, 2017, 53, 5542-5545.	2.2	36
40	Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles. Nature Communications, 2018, 9, 1465.	5.8	35
41	Highly selective synthesis of 2,5-bis(aminomethyl)furan <i>via</i> catalytic amination of 5-(hydroxymethyl)furfural with NH ₃ over a bifunctional catalyst. RSC Advances, 2019, 9, 38877-38881.	1.7	35
42	Organic ligand-free carbonylation reactions with unsupported bulk Pd as catalyst. Green Chemistry, 2018, 20, 3457-3462.	4.6	34
43	The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catalysis Science and Technology, 2021, 11, 1652-1664.	2.1	31
44	Selective Hydrogenation of Nitroaromatic Compounds with a Nickelâ€Oxideâ€5upported Nanoâ€Palladium Catalyst under Ambient Reaction Conditions. ChemCatChem, 2013, 5, 1739-1743.	1.8	30
45	Highly Selective N-Monomethylanilines Synthesis From Nitroarene and Formaldehyde via Kinetically Excluding of the Thermodynamically Favorable N,N-Dimethylation Reaction. ACS Catalysis, 2018, 8, 3943-3949.	5.5	30
46	Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. Journal of Catalysis, 2021, 401, 321-330.	3.1	30
47	<i>N</i> -Alkyl amide synthesis <i>via N</i> -alkylation of amides with alcohols. Organic and Biomolecular Chemistry, 2019, 17, 2044-2054.	1.5	29
48	The first syntheses of diformamides by carbonylation of aliphatic diamines with Au(i) complex catalysts. Chemical Communications, 2001, , 345-346.	2.2	28
49	Alcohol Amination Catalyzed by Copper Powder as a Self upported Catalyst. ChemSusChem, 2019, 12, 3185-3191.	3.6	27
50	Oxidative imination of toluenes catalyzed by Pd–Au/silica gel under mild reaction conditions. Chemical Communications, 2012, 48, 7586.	2.2	26
51	Catalytic hydrogenation of aromatic rings catalyzed by Pd/NiO. RSC Advances, 2014, 4, 2729-2732.	1.7	26
52	Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2. Science China Chemistry, 2010, 53, 1534-1540.	4.2	25
53	Active catalyst construction for CO2 recycling via catalytic synthesis of N-doped carbon on supported Cu. Nature Communications, 2019, 10, 2599.	5.8	23
54	Amine formylation with CO2 and H2 catalyzed by heterogeneous Pd/PAL catalyst. Chinese Journal of Catalysis, 2019, 40, 1141-1146.	6.9	22

#	Article	IF	CITATIONS
55	Reductive Amination of Aldehydes and Amines with an Efficient Pd/NiO Catalyst. Synthetic Communications, 2014, 44, 1314-1322.	1.1	20
56	Active palladium catalyst preparation for hydrogenation reactions of nitrobenzene, olefin and aldehyde derivatives. Journal of Molecular Catalysis A, 2014, 395, 195-201.	4.8	20
57	Synthesis of unsymmetric tertiary amines via alcohol amination. Chemical Communications, 2015, 51, 9471-9474.	2.2	19
58	Glycerol as a Building Block for Prochiral Aminoketone, <i>N</i> â€Formamide, and <i>N</i> â€Methyl Amine Synthesis. ChemSusChem, 2016, 9, 3133-3138.	3.6	19
59	Green and Practical Synthesis of Carbamates from Ureas and Organic Carbonates. Synthetic Communications, 2011, 41, 1102-1111.	1.1	18
60	lonic Liquid Templated Preparation of Ru/SiO ₂ and Its Activity in Nitrobenzene Hydrogenation. ChemCatChem, 2012, 4, 333-336.	1.8	18
61	N -Alkyl Amine Synthesis by Catalytic Alcohol Amination. , 2018, , 1-58.		18
62	Reductive <i>N</i> -methylation of quinolines with paraformaldehyde and H ₂ for sustainable synthesis of <i>N</i> -methyl tetrahydroquinolines. Chemical Communications, 2019, 55, 3915-3918.	2.2	17
63	NaF regulated aqueous phase synthesis of aromatic amides and imines catalyzed by Au/HT. Catalysis Science and Technology, 2014, 4, 1710-1715.	2.1	16
64	Ionic liquid templated preparation of carbon aerogels based on resorcinol–formaldehyde: properties and catalytic performance. Journal of Materials Chemistry, 2012, 22, 21852.	6.7	15
65	Precise regulation of the selectivity of supported nano-Pd catalysts using polysiloxane coatings with tunable surface wettability. Chemical Communications, 2019, 55, 8305-8308.	2.2	15
66	Cooperative transformation of nitroarenes and biomass-based alcohols catalyzed by CuNiAlO _x . RSC Advances, 2015, 5, 7970-7975.	1.7	14
67	A conjugated ketone as a catalyst in alcohol amination reactions under transition-metal and hetero-atom free conditions. RSC Advances, 2015, 5, 43589-43593.	1.7	14
68	Sustainable Catalytic Amination of Diols: From Cycloamination to Monoamination. ACS Sustainable Chemistry and Engineering, 2018, 6, 1061-1067.	3.2	14
69	Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nature Communications, 2021, 12, 6840.	5.8	13
70	Supported Ni nanoparticles with a phosphine ligand as an efficient heterogeneous non-noble metal catalytic system for regioselective hydrosilylation of alkynes. Organic and Biomolecular Chemistry, 2020, 18, 7554-7558.	1.5	11
71	Synthesis of Amidesâ€Functionalized POPsâ€Supported Nanoâ€Pd Catalysts for Phosphine Ligandâ€Free Heterogeneous Hydroaminocarbonylation of Alkynes. Advanced Synthesis and Catalysis, 2020, 362, 2348-2353.	2.1	11
72	Efficient hydrogenation catalyst designing via preferential adsorption sites construction towards active copper. Journal of Catalysis, 2021, 400, 397-406.	3.1	11

#	Article	IF	CITATIONS
73	A Highly Active N-Doped Carbon Supported CoFe Alloy Catalyst for Hydroformylation of C ₈ Olefins. Journal of Physical Chemistry C, 2022, 126, 273-281.	1.5	11
74	N/O-doped carbon as a "solid ligand―for nano-Pd catalyzed biphenyl- and triphenylamine syntheses. Catalysis Science and Technology, 2017, 7, 2170-2182.	2.1	10
75	Organic Ligandâ€Free Hydroformylation with Rh Particles as Catalyst ^{â€} . Chinese Journal of Chemistry, 2020, 38, 139-143.	2.6	10
76	Selective synthesis of <i>N</i> -monomethyl amines with primary amines and nitro compounds. Catalysis Science and Technology, 2021, 11, 7239-7254.	2.1	10
77	Supported Cu ^{II} Singleâ€Ion Catalyst for Total Carbon Utilization of C ₂ and C ₃ Biomassâ€Based Platform Molecules in the Nâ€Formylation of Amines. Chemistry - A European Journal, 2021, 27, 16889-16895.	1.7	10
78	Carboraneâ€Derivatized Lowâ€Melting Salts with Etherâ€Functionalized Cations – Preparation and Properties. European Journal of Inorganic Chemistry, 2011, 2011, 1910-1920.	1.0	9
79	Selective catalytic formic acid decomposition for hydrogen generation in ionic liquids. Journal of Fuel Chemistry and Technology, 2010, 38, 544-553.	0.9	8
80	A way to realize controllable preparation of active nickel oxide supported nano-Au catalyst for CO oxidation. Applied Catalysis A: General, 2014, 473, 7-12.	2.2	8
81	Organic ligand and solvent free oxidative carbonylation of amine over Pd/TiO ₂ with unprecedented activity. Green Chemistry, 2019, 21, 4040-4045.	4.6	8
82	Oxidative Carbonylation of Aniline with a Mesoporous Silica Gel Immobilised Se-Functionalised Ionic Liquid Catalyst. Journal of Chemical Research, 2010, 34, 344-347.	0.6	7
83	Highly efficient carbon catalyzed aerobic selective oxidation of benzylic and allylic alcohols under transition-metal and heteroatom free conditions. RSC Advances, 2014, 4, 59754-59758.	1.7	7
84	Deconstructive di-functionalization of unstrained, benzo cyclic amines by C–N bond cleavage using a recyclable tungsten catalyst. Organic and Biomolecular Chemistry, 2019, 17, 4970-4974.	1.5	7
85	Controllable synthesis of azoxybenzenes and anilines with alcohol as the reducing agent promoted by KOH. Synthetic Communications, 2019, 49, 688-696.	1.1	7
86	Towards Economic and Sustainable Amination with Green and Renewable Feedstocks. Chinese Journal of Chemistry, 2021, 39, 1051-1069.	2.6	7
87	Self-Assembly of Ionic Liquids and Metal Complexes in Super-Cages of NaY: Integration of Free Catalysts and Solvent Molecules into Confined Catalytic Sites. Chinese Journal of Catalysis, 2010, 31, 933-937.	6.9	6
88	Zeolite catalyzed hydroarylation of alkenes with aromatic amines under organic ligand-free conditions. Journal of Catalysis, 2021, 394, 18-29.	3.1	6
89	Enhanced CO2 Adsorption on Nitrogen-Doped Carbon Materials by Salt and Base Co-Activation Method. Materials, 2019, 12, 1207.	1.3	5
90	Sustainable Co‣ynthesis of Glycolic Acid, Formamides and Formates from 1,3â€Dihydroxyacetone by a Cu/Al 2 O 3 Catalyst with a Single Active Sites. Angewandte Chemie, 2019, 131, 5305-5309.	1.6	5

#	Article	IF	CITATIONS
91	Novel route for the synthesis of 8-oxa-3-azabicyclo[3.2.1]octane: One-pot aminocyclization of 2,5-tetrahydrofurandimethanol catalyzed by Pt/NiCuAlO. Catalysis Communications, 2015, 58, 195-199.	1.6	4
92	A biphosphine copolymer encapsulated single-site Rh catalyst for heterogeneous regioselective hydroaminomethylation of alkenes. Chemical Communications, 2022, 58, 8093-8096.	2.2	3
93	Preface to Special Issue of ChemSusChem : Sustainable Organic Synthesis. ChemSusChem, 2019, 12, 2834-2834.	3.6	2
94	Green synthesis of N-alkylamines and amides via the building and transformation of carbonyl-containing molecules. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 1-6.	3.2	2
95	Innenrücktitelbild: Sustainable Coâ€Synthesis of Glycolic Acid, Formamides and Formates from 1,3â€Dihydroxyacetone by a Cu/Al ₂ O ₃ Catalyst with a Single Active Sites (Angew.) Tj	etqq1 1	0.784314 rg <mark>8</mark> 1