Fuguo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3182959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science and Technology, 2016, 56, 21-38.	15.1	505
2	A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocolloids, 2017, 63, 625-634.	10.7	261
3	Foodâ€Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 76-95.	11.7	246
4	Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances, 2015, 5, 15641-15651.	3.6	199
5	Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science and Technology, 2020, 103, 293-303.	15.1	195
6	Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry, 2017, 237, 1163-1171.	8.2	177
7	Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. Journal of Colloid and Interface Science, 2019, 536, 80-87.	9.4	163
8	Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocolloids, 2016, 61, 578-588.	10.7	161
9	Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocolloids, 2020, 102, 105569.	10.7	158
10	Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids, 2018, 79, 450-461.	10.7	150
11	Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chemistry, 2016, 205, 129-139.	8.2	138
12	Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 2021, 119, 106812.	10.7	119
13	Molecular interaction between (â``)-epigallocatechin-3-gallate and bovine lactoferrin using multi-spectroscopic method and isothermal titration calorimetry. Food Research International, 2014, 64, 141-149.	6.2	101
14	Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends in Food Science and Technology, 2019, 91, 354-361.	15.1	98
15	Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 2017, 207, 35-45.	5.2	97
16	Effect of heat treatment on physical, structural, thermal and morphological characteristics of zein in ethanol-water solution. Food Hydrocolloids, 2016, 58, 11-19.	10.7	96
17	Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition, 2020, 60, 2083-2097.	10.3	94
18	Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, 2017, 490, 328-335.	9.4	92

#	Article	IF	CITATIONS
19	Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry, 2017, 221, 395-403.	8.2	91
20	Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition, 2018, 58, 770-784.	10.3	85
21	Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. Journal of Agricultural and Food Chemistry, 2019, 67, 13228-13236.	5.2	84
22	Influence of polysaccharides on the physicochemical properties of lactoferrin–polyphenol conjugates coated β-carotene emulsions. Food Hydrocolloids, 2016, 52, 661-669.	10.7	83
23	Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends in Food Science and Technology, 2019, 93, 185-196.	15.1	83
24	Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. International Journal of Biological Macromolecules, 2020, 153, 912-920.	7.5	80
25	Structure and antimicrobial mechanism of ɛ-polylysine–chitosan conjugates through Maillard reaction. International Journal of Biological Macromolecules, 2014, 70, 427-434.	7.5	75
26	The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Research International, 2018, 109, 24-34.	6.2	75
27	Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. International Journal of Biological Macromolecules, 2020, 149, 627-638.	7.5	75
28	Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science and Technology, 2018, 79, 67-77.	15.1	74
29	Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 2022, 62, 5029-5055.	10.3	73
30	Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH. Food Hydrocolloids, 2016, 58, 49-59.	10.7	72
31	Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocolloids, 2022, 126, 107441.	10.7	71
32	Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids, 2021, 113, 106473.	10.7	65
33	Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid–lactoferrin–glucose/polydextrose conjugates. Food Chemistry, 2016, 196, 338-346.	8.2	63
34	A review of multilayer and composite films and coatings for active biodegradable packaging. Npj Science of Food, 2022, 6, 18.	5.5	61
35	Impact of chitosan–EGCG conjugates on physicochemical stability ofÂβ-carotene emulsion. Food Hydrocolloids, 2014, 39, 163-170.	10.7	59
36	Design principles of oilâ€inâ€water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3159-3190.	11.7	59

#	Article	IF	CITATIONS
37	Enzymatic and Nonenzymatic Conjugates of Lactoferrin and (â~')-Epigallocatechin Gallate: Formation, Structure, Functionality, and Allergenicity. Journal of Agricultural and Food Chemistry, 2021, 69, 6291-6302.	5.2	59
38	Quercetagetin loaded in soy protein isolate–κ-carrageenan complex: Fabrication mechanism and protective effect. Food Research International, 2016, 83, 31-40.	6.2	58
39	Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International, 2017, 96, 103-112.	6.2	58
40	Simultaneous treatment of heat and high pressure homogenization of zein in ethanol–water solution: Physical, structural, thermal and morphological characteristics. Innovative Food Science and Emerging Technologies, 2016, 34, 161-170.	5.6	57
41	Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT - Food Science and Technology, 2020, 133, 109869.	5.2	57
42	Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 9532-9541.	5.2	55
43	Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends in Food Science and Technology, 2020, 103, 78-93.	15.1	54
44	Fabrication and characterization of zein-tea polyphenols-pectin ternary complex nanoparticles as an effective hyperoside delivery system: Formation mechanism, physicochemical stability, and in vitro release property. Food Chemistry, 2021, 364, 130335.	8.2	52
45	Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 2022, 280, 121265.	11.4	52
46	Effects of Dynamic High-Pressure Microfluidization Treatment and the Presence of Quercetagetin on the Physical, Structural, Thermal, and Morphological Characteristics of Zein Nanoparticles. Food and Bioprocess Technology, 2016, 9, 320-330.	4.7	51
47	Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: Formation, characterization and application. Food Chemistry, 2018, 255, 390-398.	8.2	50
48	Fabrication and characterization of binary composite nanoparticles between zein and shellac by anti-solvent co-precipitation. Food and Bioproducts Processing, 2018, 107, 88-96.	3.6	48
49	Development of pH-responsive emulsions stabilized by whey protein fibrils. Food Hydrocolloids, 2022, 122, 107067.	10.7	48
50	In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. Journal of Food Science and Technology, 2016, 53, 2614-2624.	2.8	47
51	Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chemistry, 2022, 384, 132511.	8.2	46
52	Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chemistry, 2021, 339, 128016.	8.2	43
53	Native and Thermally Modified Protein–Polyphenol Coassemblies: Lactoferrin-Based Nanoparticles and Submicrometer Particles as Protective Vehicles for (â^')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2014, 62, 10816-10827.	5.2	41
54	Glycosylation improves the functional characteristics of chlorogenic acid–lactoferrin conjugate. RSC Advances, 2015, 5, 78215-78228.	3.6	41

#	Article	IF	CITATIONS
55	Fabrication Mechanism and Structural Characteristics of the Ternary Aggregates by Lactoferrin, Pectin, and (â~)-Epigallocatechin Gallate Using Multispectroscopic Methods. Journal of Agricultural and Food Chemistry, 2015, 63, 5046-5054.	5.2	39
56	Role of Food Phytochemicals in the Modulation of Circadian Clocks. Journal of Agricultural and Food Chemistry, 2019, 67, 8735-8739.	5.2	39
57	Physical, structural, thermal and morphological characteristics of zeinquercetagetin composite colloidal nanoparticles. Industrial Crops and Products, 2015, 77, 476-483.	5.2	38
58	Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. LWT - Food Science and Technology, 2022, 154, 112651.	5.2	37
59	Physicochemical stability of citral emulsions stabilized by milk proteins (lactoferrin, α-lactalbumin,) Tj ETQq1 2015, 487, 104-112.	1 0.784314 r 4.7	gBT /Overloc 36
60	Physicochemical characterisation of β-carotene emulsion stabilised by covalent complexes of α-lactalbumin with (â^)-epigallocatechin gallate or chlorogenic acid. Food Chemistry, 2015, 173, 564-568.	8.2	34
61	Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution. Food Chemistry, 2016, 210, 388-395.	8.2	34
62	Effect of Membrane Surface Modification Using Chitosan Hydrochloride and Lactoferrin on the Properties of Astaxanthin-Loaded Liposomes. Molecules, 2020, 25, 610.	3.8	33
63	Evaluation on oxidative stability of walnut beverage emulsions. Food Chemistry, 2016, 203, 409-416.	8.2	31
64	Inhibition of the Aggregation of Lactoferrin and (â^')-Epigallocatechin Gallate in the Presence of Polyphenols, Oligosaccharides, and Collagen Peptide. Journal of Agricultural and Food Chemistry, 2015, 63, 5035-5045.	5.2	29
65	Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles. Food Hydrocolloids, 2022, 125, 107367.	10.7	29
66	Effect of carrier oils on the physicochemical properties of orange oil beverage emulsions. Food Research International, 2015, 74, 260-268.	6.2	28
67	Sonochemical effects on formation and emulsifying properties of zein-gum Arabic complexes. Food Hydrocolloids, 2021, 114, 106557.	10.7	28
68	Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, 2022, 125, 107438.	10.7	28
69	Fabrication and characterization of functional protein–polysaccharide–polyphenol complexes assembled from lactoferrin, hyaluronic acid and (â^')-epigallocatechin gallate. Food and Function, 2019, 10, 1098-1108.	4.6	27
70	Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. Journal of Agricultural and Food Chemistry, 2022, 70, 6354-6367.	5.2	27
71	Investigation into the Maillard reaction between É›-polylysine and dextran in subcritical water and evaluation of the functional properties of the conjugates. LWT - Food Science and Technology, 2014, 57, 612-617.	5.2	26
72	Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chemistry, 2022, 387, 132790.	8.2	26

#	Article	IF	CITATIONS
73	Physicochemical Properties of Lutein-Loaded Microcapsules and Their Uptake via Caco-2 Monolayers. Molecules, 2018, 23, 1805.	3.8	23
74	Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innovative Food Science and Emerging Technologies, 2021, 67, 102525.	5.6	23
75	Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on <i>ε</i> â€polylysine and chitosan. Journal of the Science of Food and Agriculture, 2014, 94, 2986-2991.	3.5	22
76	Kinetic Characterization and Thermal Inactivation of Peroxidase in Aqueous Extracts from Sweet Corn and Waxy Corn. Food and Bioprocess Technology, 2013, 6, 2800-2807.	4.7	21
77	Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture. Journal of Agricultural and Food Chemistry, 2019, 67, 2991-2998.	5.2	21
78	Impact of pea protein-inulin conjugates prepared via the Maillard reaction using a combination of ultrasound and pH-shift treatments on physical and oxidative stability of algae oil emulsions. Food Research International, 2022, 156, 111161.	6.2	20
79	Pickering emulsions stabilized by biocompatible particles: A review of preparation, bioapplication, and perspective. Particuology, 2022, 64, 110-120.	3.6	19
80	Fermentation of tomato juice improves in vitro bioaccessibility of lycopene. Journal of Functional Foods, 2020, 71, 104020.	3.4	17
81	High internal phase emulsions stabilized by native and heat-treated lactoferrin-carboxymethyl chitosan complexes: Comparison of molecular and granular emulsifiers. Food Chemistry, 2022, 370, 130507.	8.2	16
82	Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions. LWT - Food Science and Technology, 2021, 151, 112121.	5.2	15
83	Development and application of hydrophilic-hydrophobic dual-protein Pickering emulsifiers: EGCG-modified caseinate-zein complexes. Food Research International, 2022, 157, 111451.	6.2	15
84	Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 6423-6444.	10.3	13
85	Formation and Characterization of Lactoferrin-Hyaluronic Acid Conjugates and Their Effects on the Storage Stability of Sesamol Emulsions. Molecules, 2018, 23, 3291.	3.8	12
86	Preservation of Cichoric Acid Antioxidant Properties Loaded in Heat Treated Lactoferrin Nanoparticles. Molecules, 2018, 23, 2678.	3.8	12
87	Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocolloids, 2022, 133, 107938.	10.7	11
88	Methylated Metabolites of Chicoric Acid Ameliorate Hydrogen Peroxide (H ₂ O ₂)-Induced Oxidative Stress in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2021, 69, 2179-2189.	5.2	10
89	Preparation, characterization, formation mechanism and stability of allicin-loaded emulsion gel. LWT - Food Science and Technology, 2022, 161, 113389.	5.2	10
90	Effects of Chitosan Addition on In Vitro Digestibility of Protein-Coated Lipid Droplets. Journal of Dispersion Science and Technology, 2015, 36, 1556-1563.	2.4	9

Fuguo Liu

#	Article	IF	CITATIONS
91	Comparative Study of Heat- and Enzyme-Induced Emulsion Gels Formed by Gelatin and Whey Protein Isolate: Physical Properties and Formation Mechanism. Gels, 2022, 8, 212.	4.5	9
92	Simultaneous Ultrasound and Heat Enhance Functional Properties of Glycosylated Lactoferrin. Molecules, 2020, 25, 5774.	3.8	8
93	Development of astaxanthin-loaded layer-by-layer emulsions: physicochemical properties and improvement of LPS-induced neuroinflammation in mice. Food and Function, 2021, 12, 5333-5350.	4.6	8
94	Comparison of lipoxygenase activity characteristics in aqueous extracts from milk-stage sweet corn and waxy corn. Food Science and Biotechnology, 2015, 24, 867-873.	2.6	7
95	Evaluation of the encapsulation capacity of nervous acid in nanoemulsions obtained with natural and ethoxylated surfactants. Journal of Molecular Liquids, 2021, 343, 117632.	4.9	4
96	Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS Applied Bio Materials, 2021, 4, 7825-7835.	4.6	3
97	Rational design of lycopene emulsion-based nanofood for Lactobacillus plantarum to enhance the growth and flavor production. Food Hydrocolloids, 2022, 127, 107518.	10.7	3