
Liudmila I Ivleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3182396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman spectroscopy of crystals for stimulated Raman scattering. Optical Materials, 1999, 11, 307-314.	3.6	169
2	SrWO4:Nd3+ – new material for multifunctional lasers. Optical Materials, 2003, 23, 439-442.	3.6	98
3	Stimulated Raman scattering in alkaline-earth tungstate crystals. Quantum Electronics, 2000, 30, 55-59.	1.0	88
4	Performance of ZnMoO ₄ crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum. Journal of Instrumentation, 2010, 5, P11007-P11007.	1.2	88
5	Growth of SBN single crystals by Stepanov technique for photorefractive applications. Optical Materials, 1995, 4, 168-173.	3.6	84
6	Ferroelectric properties of strontium barium niobate crystals doped with rare-earth metals. Physics of the Solid State, 2000, 42, 2129-2136.	0.6	67
7	Luminescent and laser properties of Yb?Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-?m lasers. Applied Physics B: Lasers and Optics, 2004, 79, 577-581.	2.2	59
8	Atomic structure of Sr0.75Ba0.25Nb2O6 single crystal and composition-structure-property relationin (Sr,Ba)Nb2O6 solid solutions. Physics of the Solid State, 2000, 42, 1716-1721.	0.6	58
9	Growth and properties of ZnMoO4 single crystals. Crystallography Reports, 2008, 53, 1087-1090.	0.6	50
10	Luminescence investigation of zinc molybdate single crystals. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1579-1583.	1.8	49
11	Nd:SrWO4 and Nd:BaWO4 Raman lasers. Optical Materials, 2007, 30, 195-197.	3.6	43
12	Evaluation of ytterbium doped strontium barium niobate as a potential tunable laser crystal in the visible. Journal of Applied Physics, 2004, 95, 6185-6191.	2.5	38
13	Stimulated Raman scattering of picosecond pulses in SrMoO4and Ca3(VO4)2crystals. Quantum Electronics, 2003, 33, 331-334.	1.0	36
14	Passive Q-switching at 1.54 μm of an Er–Yb: GdCa4O(BO3)3 laser with a Co2+: MgAl2O4 saturable absorber. Applied Physics B: Lasers and Optics, 2005, 81, 49-52.	2.2	35
15	Nonlinear surface waves on the boundary of a photorefractive crystal. Quantum Electronics, 2010, 40, 437-440.	1.0	35
16	Effects of rare-earth impurity doping on the ferroelectric and photorefractive properties of strontium–barium niobate crystals. Optical Materials, 2001, 18, 179-182.	3.6	34
17	Recording of domains and regular domain patterns inÂstrontium–barium niobate crystals in the field ofÂatomicÂforceÂmicroscope. Applied Physics B: Lasers and Optics, 2009, 95, 505-512.	2.2	32
18	Luminescence peculiarities and optical properties of MgMoO4 and MgMoO4:Yb crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 556-563.	0.6	32

#	Article	IF	CITATIONS
19	Demonstration of high self-Raman laser performance of a diode-pumpedSrMoO_4:Nd^3+ crystal. Optics Letters, 2009, 34, 1102.	3.3	32
20	Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals. Quantum Electronics, 2006, 36, 720-726.	1.0	31
21	Double phase-conjugate mirror: experimental investigation and comparison with theory. Journal of the Optical Society of America B: Optical Physics, 1992, 9, 1493.	2.1	30
22	Ferroelectric domain structure in SBN crystals (Its statics and dynamics). Crystallography Reports, 2002, 47, 1023-1030.	0.6	30
23	Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals. Journal of Applied Physics, 2012, 112, .	2.5	30
24	Thermal hysteresis in the luminescence ofYb3+ions inSr0.6Ba0.4Nb2O6. Physical Review B, 2006, 73, .	3.2	29
25	Growth of optically homogeneous BaWO4 single crystals for Raman lasers. Journal of Crystal Growth, 2007, 304, 108-113.	1.5	29
26	Ferroelectric microdomains and microdomain arrays recorded in strontium–barium niobate crystals in the field of atomic force microscope. Journal of Applied Physics, 2010, 108, .	2.5	29
27	Thermal hysteresis in the luminescence of Cr3+ ions in Sr0.6Ba0.4 (NbO3)2. Applied Physics Letters, 2004, 84, 2787-2789.	3.3	28
28	Effects of Ni doping on properties of strontium–barium–niobate crystals. Solid State Communications, 2004, 130, 223-226.	1.9	27
29	Characteristics of surface photorefractive waves in a nonlinear SBN-75 crystal coated with a metal film. Quantum Electronics, 2013, 43, 14-20.	1.0	27
30	Study of ferroelectric domain switching by domain wall induced light scattering. Journal of Applied Physics, 2005, 97, 074102.	2.5	25
31	Efficient conversion of Nd:YAG laser radiationto the eye-safe spectral region by stimulated Raman scatteringin BaWO ₄ crystal. Quantum Electronics, 2010, 40, 710-715.	1.0	25
32	Laser performance of Yb:GdCa4O(BO3)3 compared to Yb:KGd(WO4)2 under diode-bar pumping. Laser Physics, 2007, 17, 1204-1208.	1.2	22
33	Ferroelectric switching of strontium–barium–niobate crystals in pulsed fields. Applied Physics Letters, 2003, 83, 2220-2222.	3.3	21
34	Physicochemical and technological peculiarities of multicomponent oxide crystal growth from melt by modified Stepanov technique. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1338-1340.	0.6	21
35	The kinetic characteristics of polarization of relaxor ferroelectrics. Journal of Experimental and Theoretical Physics, 2001, 93, 596-603.	0.9	19
36	Second harmonic generation in a strontium barium niobate crystal with a random domain structure. JETP Letters, 2008, 87, 98-102.	1.4	19

#	Article	IF	CITATIONS
37	Increase of light-beam coherence by two-wave mixing in photorefractive crystals. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 2287.	2.1	18
38	Surface photorefractive wave on the boundary of a photorefractive metal-coated crystal. Quantum Electronics, 2011, 41, 262-266.	1.0	18
39	Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 <i>μ</i> m from Nd:SrMoO ₄ self-Raman laser. Laser Physics Letters, 2016, 13, 015801.	1.4	18
40	Temperature Effect on the Stability of the Polarized State Created by Local Electric Fields in Strontium Barium Niobate Single Crystals. Scientific Reports, 2017, 7, 125.	3.3	17
41	Impact of Tm3+/Ho3+ co-doping on spectroscopic and laser properties of Ca3(VO4)2 single crystal. Journal of Crystal Growth, 2019, 513, 10-14.	1.5	17
42	Comparative study of the lasing properties of self-Raman capable Nd3+ doped tungstates and molybdates under diode pumping. Optical Materials, 2007, 30, 54-57.	3.6	16
43	Ca3(VO4)2:Tm3+—A new crystalline medium for 2-μm lasers. Journal of Crystal Growth, 2018, 501, 18-21.	1.5	16
44	The growth of multicomponent oxide single crystals by stepanov's technique. Journal of Crystal Growth, 1987, 82, 168-176.	1.5	15
45	Creation of domains and domain patterns on the nonpolar surface of Sr x Ba1 â^' x Nb2O6 crystals by atomic force microscopy. JETP Letters, 2013, 97, 483-489.	1.4	15
46	Spectroscopic and laser properties of Tm3+ ions in Ca3(VO4)2 crystal. Journal of Luminescence, 2019, 205, 482-486.	3.1	15
47	Atomic structure of (Sr0.50Ba0.50)Nb2O6 single crystals in the series of (SrxBa1 â^' x)Nb2O6 compounds. Crystallography Reports, 2002, 47, 213-216.	0.6	14
48	Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	14
49	Luminescence of Rare Earth Ions in Strontium Barium Niobate Around the Phase Transition: The Case of Tm3 + Ions. Ferroelectrics, 2008, 363, 150-162.	0.6	13
50	Second harmonic generation in microdomain gratings fabricated in strontium-barium niobate crystals with an atomic force microscope. Journal of Applied Physics, 2011, 110, 052015.	2.5	13
51	Eye-safe Nd :YVO4laser with intracavity SRS in a BaWO4crystal. Quantum Electronics, 2012, 42, 27-30.	1.0	13
52	X-ray powder diffraction methods for the determination of composition and structural parameters of Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 crystals. Journal of Alloys and Compounds, 2015, 638, 159-165.	5.5	13
53	Multi-wavelength picosecond BaWO4Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm. Laser Physics, 2018, 28, 025403.	1.2	13
54	Growth and properties of manganese doped Ca3(VO4)2 single crystals. Journal of Crystal Growth, 2021, 555, 125965.	1.5	13

#	Article	IF	CITATIONS
55	Polarization and depolarization of relaxor ferroelectric strontium barium niobate. Physics of the Solid State, 2000, 42, 1334-1340.	0.6	12
56	Growth and ferroelectric properties of Nd-doped strontium–barium niobate crystals. Journal of Crystal Growth, 2002, 237-239, 700-702.	1.5	12
57	Pure and Tm3+-doped Ca3(VO4)2 crystals: Growth, statistical and local structure, and luminescent properties. Journal of Alloys and Compounds, 2021, 854, 155918.	5.5	12
58	Polarization anomalies in a relaxor ferroelectric. JETP Letters, 2000, 71, 24-26.	1.4	11
59	Low-threshold parametric Raman generation of high-order Raman components in crystals. Applied Physics B: Lasers and Optics, 2014, 117, 225-234.	2.2	11
60	Phase transition of the uniaxial disordered ferroelectric Sr _{0.61} Ba _{0.39} Nb ₂ O ₆ . Journal of Physics Condensed Matter, 2014, 26, 185901.	1.8	11
61	Formation of single domain state and spontaneous backswitching in SBN single crystal. Ferroelectrics, 2016, 496, 149-156.	0.6	11
62	Modification of the optical and photorefractive properties of Ce-doped strontium–barium niobate by co-doping with a nonphotorefractive La impurity. Applied Physics Letters, 2001, 79, 854-856.	3.3	10
63	X-ray diffraction study of cerium-and thulium-doped (Sr,Ba)Nb2 O6 single crystals. Crystallography Reports, 2003, 48, 933-938.	0.6	10
64	Diffuse second harmonic generation under the ferroelectric switching in Sr0.75Ba0.25Nb2O6 crystals. Applied Physics Letters, 2008, 92, 032904.	3.3	10
65	Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6: Ce single crystals. Physics of the Solid State, 2011, 53, 2311-2315.	0.6	10
66	Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals. Physics of the Solid State, 2011, 53, 2468-2475.	0.6	10
67	Synthesis, characterization, spectroscopy, and laser operation of SrMoO4 crystals co-doped with Tm3+ and Ho3+. Journal of Crystal Growth, 2015, 432, 1-5.	1.5	10
68	Growth and spectral-luminescent study of SrMoO4 crystals doped with Tm3+ ions. Doklady Physics, 2016, 61, 119-123.	0.7	10
69	Effect of Ni doping on ferroelectric and dielectric properties of strontium barium niobate crystals. Applied Physics B: Lasers and Optics, 2012, 106, 143-150.	2.2	9
70	Local switching in SBN:Ni single crystals with various initial domain states. Ferroelectrics, 2018, 525, 100-107.	0.6	9
71	Effect of Mn3+ doping on crystal structure, point defects, and optical properties in green Ca3(VO4)2 single crystals. Materials Research Bulletin, 2021, 140, 111300.	5.2	9
72	Photo-luminescence studies of strontium barium niobate crystals doped with Cr3+ ions. Chemical Physics Letters, 2006, 417, 196-199.	2.6	8

#	Article	IF	CITATIONS
73	Creation of microdomains in an atomic force microscope in strontium-barium niobate ferroelectric crystals. JETP Letters, 2007, 86, 268-271.	1.4	8
74	Influence of electron irradiation on optical properties of scheelite crystals. Laser Physics, 2010, 20, 635-642.	1.2	8
75	Four-wave-mixing generation of SRS components in BaWO4and SrWO4crystals under picosecond excitation. Quantum Electronics, 2013, 43, 616-620.	1.0	8
76	Structural peculiarities and point defects of undoped and Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 crystals. Acta Materialia, 2014, 70, 208-217.	7.9	8
77	Structure and real composition of undoped and Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 single crystals. Structural Chemistry, 2016, 27, 1623-1634.	2.0	8
78	Investigation of the Thermal Conductivity of Tungstate Crystals. Crystallography Reports, 2018, 63, 111-116.	0.6	8
79	High-temperature diffusion doping as a method of fabrication of Ca3(VO4)2:Mn single crystals. Journal of Crystal Growth, 2021, 563, 126104.	1.5	8
80	Luminescence life time and time-resolved spectroscopy of Cr3+ ions in strontium barium niobate. Journal of Luminescence, 2006, 119-120, 453-456.	3.1	7
81	Processes of the relaxation of regular microdomain structures recorded in ferroelectric strontium-barium niobate crystals in the field of an atomic force microscope. JETP Letters, 2009, 90, 303-309.	1.4	7
82	Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique. Physics of the Solid State, 2009, 51, 2334-2341.	0.6	7
83	Composite waveguide on a photorefractive crystal. Quantum Electronics, 2011, 41, 924-928.	1.0	7
84	Stimulated Raman scattering of 18 picosecond laser pulses in strontium barium niobate crystal. Laser Physics Letters, 2012, 9, 519-523.	1.4	7
85	Phase transition of chemically doped uniaxial relaxor ferroelectric. Journal of Physics Condensed Matter, 2015, 27, 435901.	1.8	7
86	Spectroscopic and laser properties of SrMoO 4 :Tm 3+ crystal under 1700-nm laser diode pumping. Optical Materials, 2016, 60, 119-122.	3.6	7
87	A comprehensive structural analysis of relaxor ferroelectric Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 crystals. Journal of Alloys and Compounds, 2017, 724, 879-888.	5.5	7
88	Revealing the peculiar local behavior of manganese and cobalt in diffusion-doped calcium orthovanadate Ca ₃ (VO ₄) ₂ . Dalton Transactions, 2022, 51, 5673-5686.	3.3	7
89	Electro-Optical Properties of Strontium–Barium Niobate Crystals and Their Relation to the Domain Structure of the Crystals. Physics of the Solid State, 2005, 47, 305.	0.6	6
90	Photorefractive parametric scattering in the ferroelectric relaxor SBN: Phenomenological and application aspects. Physical Review B, 2005, 71, .	3.2	6

#	Article	IF	CITATIONS
91	Study of the temperature dependence of the electrical conductivity in strontium-barium niobate crystals with different dopants. Crystallography Reports, 2007, 52, 328-331.	0.6	6
92	Double Loops Formation in Sr _{0.75} Ba _{0.25} Nb ₂ O ₆ Single Crystals in Relaxor Phase. Ferroelectrics, 2013, 443, 116-123.	0.6	6
93	SrMoO4:Pr3+ single crystals: Growth and properties. Doklady Physics, 2015, 60, 122-126.	0.7	6
94	New structural effects in SrMoO ₄ :Tm ³⁺ /Ho ³⁺ crystals. CrystEngComm, 2017, 19, 295-303.	2.6	6
95	Dependence of acoustic anomalies on chemical composition in strontium barium niobate crystals (from conventional ferroelectric to relaxor) probed by Brillouin light scattering. Ferroelectrics, 2019, 542, 21-27.	0.6	6
96	Domain Switching by Electron Beam Irradiation in SBN61:Ce Single Crystals Covered by Dielectric Layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 191-196.	3.0	6
97	Micro-Raman domain imaging in calcium orthovanadate single crystals. Ferroelectrics, 2021, 576, 85-93.	0.6	6
98	Photorefractive properties of cobalt-doped strontium barium niobate crystals. Quantum Electronics, 1999, 29, 449-453.	1.0	5
99	Switching kinetics of a relaxor ferroelectric Sr _{0.75} Ba _{0.25} Nb ₂ O ₆ observed by the second harmonic generation method. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 321-325.	1.8	5
100	Evolution of the dielectric and acoustic parameters of chromium-doped SBN single crystals with variations in temperature. Physics of the Solid State, 2009, 51, 577-581.	0.6	5
101	Microdomain Arrays Fabricated in Strontium-Barium Niobate Crystals by Microscopic Methods. Ferroelectrics, 2013, 442, 63-73.	0.6	5
102	Influence of the domain structure on piezoelectric and dielectric properties of relaxor SBN single crystals. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012031.	0.6	5
103	Studying the Nonlinear Optical Response from Local Polar Inhomogeneities in Strontium Barium Niobate Crystals of Different Chemical Composition. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 261-265.	0.6	5
104	Growth and spectral-luminescence characteristics of modified BGO crystals. Journal of Crystal Growth, 2019, 525, 125205.	1.5	5
105	Synthesis, Structure, and Dielectric Characteristics of Sr0.61Ba0.39Nb2O6 Single Crystals and Thin Films. Physics of the Solid State, 2019, 61, 244-248.	0.6	5
106	Comparison of Acoustic and Nonlinear Optic Properties of Strontium Barium Niobate Crystals of Different Compositions. Ferroelectrics, 2019, 538, 126-134.	0.6	5
107	Nanosecond parametric Raman anti-Stokes SrWO ₄ laser at 507 nm with collinear phase matching. Optics Express, 2020, 28, 22919.	3.4	5
108	The problems of growing cation-deficient Ca3(Nb,Ga)2Ga3O12 garnet by Stepanov's technique. Journal of Crystal Growth, 1990, 104, 84-87.	1.5	4

#	Article	IF	CITATIONS
109	Polarization of strontium-barium niobate crystals in pulsed fields. Physics of the Solid State, 2003, 45, 1537-1542.	0.6	4
110	Hydroxil ions in scheelite type molybdates and tungstates. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 856-859.	0.8	4
111	Dynamic Holography Method for Nondestructive Testing of Optical Homogeneity of Transparent Media. Crystallography Reports, 2010, 55, 1000-1005.	0.6	4
112	Investigation of thermophysical characteristics of SrMoO4 crystals, nominally pure and doped with rare earth ions. Crystallography Reports, 2015, 60, 915-920.	0.6	4
113	Structure and composition peculiarities and spectral-luminescent properties of colorless and pink Bi4Ge3O12 scintillation crystals. Arabian Journal of Chemistry, 2018, 11, 1270-1280.	4.9	4
114	Temperature dependence of the spontaneous polarization, acoustic and strain anomalies in strontium barium niobate crystals of different chemical compositions probed by the second harmonic generation technique. Ferroelectrics, 2020, 560, 54-60.	0.6	4
115	Growth defects in bariumâ€strontium niobate crystals. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 1977, 12, 1157-1162.	0.3	3
116	Frequency scanning of a laser with a Littman — Metcalf cavity using an electrooptic deflector. Quantum Electronics, 2001, 31, 825-828.	1.0	3
117	Study of ferroelectric switching by domain-wall induced light scattering. JETP Letters, 2004, 80, 258-262.	1.4	3
118	Effect of gamma irradiation on the dielectric response of a Sr0.75Ba0.25Nb2O6 relaxor single crystal. Physics of the Solid State, 2006, 48, 1117-1119.	0.6	3
119	Investigation of hysteresis loops in SBN single crystal. Journal of Physics: Conference Series, 2007, 93, 012020.	0.4	3
120	Crystals for the efficient conversion and control of laser radiation. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, 74, 609.	0.4	3
121	Growth of single crystals of sodium vanadate bronze and investigation into their physicochemical and emission-getter characteristics. Nanotechnologies in Russia, 2011, 6, 379-386.	0.7	3
122	Formation of self-assembled nanodomain structures in single crystals of uniaxial ferroelectrics lithium niobate, lithium tantalate and strontium–barium niobate. Journal of Advanced Dielectrics, 2014, 04, 1450006.	2.4	3
123	The Behavior of Current and Dielectric Response in SBN-75:Cr Single Crystal under Illumination Effect. Ferroelectrics, 2014, 469, 92-96.	0.6	3
124	X-ray source on the basis of the piroelectric crystal Sr0.61Ba0.39Nb2O6. AIP Advances, 2017, 7, .	1.3	3
125	Local structural features and composition of the Bi4Ge3O12:Dy3+ crystals: effect of doping concentration. CrystEngComm, 2020, 22, 5666-5677.	2.6	3
126	Optical investigations of fluctuation of order parameter in THz range in SrxBa1-xNb2O6 crystals with different chemical compositions. Ferroelectrics, 2020, 560, 102-109.	0.6	3

#	Article	IF	CITATIONS
127	Structural Characteristics of Sr0.61Ba0.39Nb2O6/MgO(001) Thin Films Grown by RF-Cathode Sputtering. Physics of the Solid State, 2021, 63, 286-290.	0.6	3
128	Observation of amplitude gratings in nonpoled strontium barium niobate crystals. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2169.	2.1	2
129	Slow Polarization Kinetics in Relaxor Ferroelectrics. Ferroelectrics, 2003, 285, 275-281.	0.6	2
130	Erbium luminescence in 3D- and 2D-mesoporous matrices. , 2004, , .		2
131	Switching of SBN crystals: Comparison with the model case (DTGS). Crystallography Reports, 2004, 49, 1018-1027.	0.6	2
132	Lasing properties of new Nd3+-doped tungstate, molybdate, and fluoride materials under selective optical pumping. , 2006, , .		2
133	Structural conditionality for the quadratic nonlinear susceptibility of Sr1â^'x Ba x Nb2O6 crystals. Crystallography Reports, 2007, 52, 1056-1060.	0.6	2
134	Some new approaches for development of mid-IR laser sources. Proceedings of SPIE, 2008, , .	0.8	2
135	Polarization Reversal Kinetics in Strontium Barium Niobate Relaxor Crystals. Ferroelectrics, 2011, 413, 311-327.	0.6	2
136	Temperature Dependence of Domain Switching in Cr Doped Sr _{0.61} Ba _{0.39} Nb ₂ O ₆ Single Crystals. Ferroelectrics, 2012, 426, 97-102.	0.6	2
137	Backswitching effect in relaxor SBN crystals, studied by PFM-spectroscopy. Ferroelectrics, Letters Section, 2017, 44, 65-72.	1.0	2
138	Diode-pumped SrMoO ₄ :Tm ³⁺ crystal lasing near 1500 nm. Laser Physics Letters, 2018, 15, 045802.	1.4	2
139	Local Polarization Reversal by Ion Beam Irradiation in SBN Single Crystals Covered by Dielectric Layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2824-2831.	3.0	2
140	Eye-safe, Diode-pumped, Passively Q-switched, Self-Raman Nd:SrMoO4 Laser Generating at 4F3/2 –> 4I13/2 Transition. , 2017, , .		2
141	Annealing-Induced Structural Behavior of Mn Dopant Ions in Calcium Orthovanadate Ca ₃ (VO ₄) ₂ Single Crystals. Inorganic Chemistry, 2022, 61, 7060-7068.	4.0	2
142	Growth and analysis of bariumâ€sodium niobate crystals. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 1976, 11, 1113-1118.	0.3	1
143	Experimental investigation of a system of two coupled double phase conjugate mirrors. Optics Communications, 1992, 93, 107-111.	2.1	1
144	Picosecond stimulated Raman scattering in new crystals Nd:SrWO 4 and SrMoO 4. , 2003, , .		1

144 Picosecond stimulated Raman scattering in new crystals Nd:SrWO 4 and SrMoO 4., 2003, , .

#	ŧ	Article	IF	CITATIONS
1	145	The Slow Processes of Polarization Relaxation in the SBN and Doped SBN Single Crystals with Tungsten Bronze Structure. Ferroelectrics, 2004, 299, 191-196.	0.6	1
1	146	Polarization Kinetics of a Photosensitive Relaxor Ferroelectric. Physics of the Solid State, 2005, 47, 298.	0.6	1
1	147	Temperature-dependent coherent oscillation in photorefractive relaxor strontium barium niobate. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1648.	2.1	1
1	148	Bistable luminescence of trivalent rare-earth ions in crystals. Journal of Luminescence, 2006, 119-120, 314-317.	3.1	1
1	149	Effect of illumination on the long-term relaxation of polarization in an SBN-75+0.01 at. % Cr single crystal. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1238-1239.	0.6	1
1	150	Crystal growth and physical properties of β-NaxV2O5 bronze. Journal of Crystal Growth, 2011, 336, 89-93.	1.5	1
1	151	Effect of illumination on a dielectric nonlinearity in Cr-doped SBN-75 single crystal. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1399-1402.	0.6	1
1	152	Study of Domain Kinetics in SBN Single Crystals in Electric Field Applied by Suspension of Silver Nanoparticles. Ferroelectrics, 2013, 443, 45-53.	0.6	1
1	153	Thulium optical centers in Tm,Nb:SrMoO 4 crystal. Journal of Luminescence, 2017, 184, 44-47.	3.1	1
1	154	Tip-induced domain growth in the non-polar cuts of SBN:Ce single crystals. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012049.	0.6	1
1	155	Anomalous domains formed under AFM-TIP voltages in Sr0.61Ba0.39Nb2O6 crystals and their suppression. Applied Physics Letters, 2020, 117, .	3.3	1
1	156	Evolution of the domain structure during polarization reversal in relaxor SBN single crystals studied by ÄŒerenkov-type second harmonic generation microscopy. Ferroelectrics, 2021, 576, 75-84.	0.6	1
1	157	Nanophotonic structures on the basis of the ordered ensembles bacteriorhodopsin-opal matrix-substrate. , 2004, , .		0
1	158	Pulsed self-Raman laser operation in Nd:SrMoO 4 at 1.57 μm. , 2008, , .		0
1	159	Anomalies of Pyroelectric Hysteresis Loops in Relaxor Ferroelectric SBN. Ferroelectrics, 2008, 374, 128-135.	0.6	0
1	160	SPECIFIC FEATURES OF 1D AND 2D DOMAIN PATTERN STABILITY RECORDED IN STRONTIUM-BARRIUM NIOBATE BY ATOMIC FORCE MICROSCOPE. Integrated Ferroelectrics, 2009, 109, 36-47.	0.7	0
1	161	Optical and dielectric properties of SBN61 single crystals doped with Co, Cr, Ni and Ce. Optical Materials, 2009, 31, 1794-1797.	3.6	0
1	162	Optical properties of barium and strontium tungstate Raman crystals. , 2011, , .		0

#	Article	IF	CITATIONS
163	Surface photorefractive wave on the boundary of a photorefractive crystal covered by metal. Proceedings of SPIE, 2012, , .	0.8	Ο
164	Interband two-photon absorption in strontium barium niobate crystals. Quantum Electronics, 2012, 42, 595-599.	1.0	0
165	Study of melting and crystallization of sodium vanadium oxide bronze. Doklady Physical Chemistry, 2013, 451, 176-179.	0.9	0
166	Influence of chromium and niobium Co-doping on laser damage threshold of Raman active crystals. , 2013, , .		0
167	The diode-pumped Nd:SrMoO <inf>4</inf> self-Raman-parametric laser generation of shortened 300-picosecond pulses without any mode-locking device. , 2016, , .		0
168	Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd 3+ :SBN Crystals with Needle-Like Ferroelectric Domains. Chinese Physics Letters, 2018, 35, 034203.	3.3	0
169	Spontaneous and Stimulated Raman Scattering in Tungstate and Molybdate Crystals at Both High and Low Frequency Anionic Group Vibrations. , 2018, , .		0
170	Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals. Crystals, 2021, 11, 780.	2.2	0
171	Single Crystal SBN:Yb / Opal Matrix (SiO2):Er Composite as a Nanophotonic Structure. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2004, , 279-284.	0.1	0
172	10.1007/s11448-008-2007-3., 2010, 87, 98.		0
173	Growth of SBN single crystals by Stepanov technique for photorefractive applications. European Materials Research Society Symposia Proceedings, 1995, , 168-173.	0.0	0
174	Spectral-Luminescence Investigation of Strontium Molybdate Crystal Doped with Ho3+and Tm3+ Ions. , 2015, , .		0
175	All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm. , 2017, , .		0
176	Effect of thulium impurity on the dielectric properties of barium strontium niobate single crystals. Ferroelectrics, 2022, 590, 75-80.	0.6	0
177	The polar properties of calcium orthovanadate crystals doped with manganese and thulium ions. Ferroelectrics, 2022, 591, 201-210.	0.6	0
178	Formation of broad domain boundary during dot ion beam irradiation in SBN:Ni single crystals. Ferroelectrics, 2022, 592, 72-82.	0.6	0
179	Domain structure evolution in calcium orthovanadate crystal induced by IR laser irradiation. Ferroelectrics, 2022, 592, 83-89.	0.6	0
180	Strontium barium niobate crystals with various chemical compositions probed by Raman and Brillouin scattering. Ferroelectrics, 2022, 592, 108-115.	0.6	0